vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_acosh.c (1672B)


      1 /* @(#)e_acosh.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #ifndef lint
     14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_acosh.c,v 1.7 2002/05/28 17:03:12 alfred Exp $";
     15 #endif
     16 
     17 /* __ieee754_acosh(x)
     18  * Method :
     19  *	Based on
     20  *		acosh(x) = log [ x + sqrt(x*x-1) ]
     21  *	we have
     22  *		acosh(x) := log(x)+ln2,	if x is large; else
     23  *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
     24  *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
     25  *
     26  * Special cases:
     27  *	acosh(x) is NaN with signal if x<1.
     28  *	acosh(NaN) is NaN without signal.
     29  */
     30 
     31 #include "math.h"
     32 #include "math_private.h"
     33 
     34 static const double
     35 one	= 1.0,
     36 ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */
     37 
     38 double
     39 __ieee754_acosh(double x)
     40 {
     41 	double t;
     42 	int32_t hx;
     43 	u_int32_t lx;
     44 	EXTRACT_WORDS(hx,lx,x);
     45 	if(hx<0x3ff00000) {		/* x < 1 */
     46 	    return (x-x)/(x-x);
     47 	} else if(hx >=0x41b00000) {	/* x > 2**28 */
     48 	    if(hx >=0x7ff00000) {	/* x is inf of NaN */
     49 	        return x+x;
     50 	    } else
     51 		return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */
     52 	} else if(((hx-0x3ff00000)|lx)==0) {
     53 	    return 0.0;			/* acosh(1) = 0 */
     54 	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
     55 	    t=x*x;
     56 	    return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
     57 	} else {			/* 1<x<2 */
     58 	    t = x-one;
     59 	    return log1p(t+__ieee754_sqrt(2.0*t+t*t));
     60 	}
     61 }