vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_exp.c (5189B)


      1 /* @(#)e_exp.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #ifndef lint
     14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_exp.c,v 1.9 2003/07/23 04:53:46 peter Exp $";
     15 #endif
     16 
     17 /* __ieee754_exp(x)
     18  * Returns the exponential of x.
     19  *
     20  * Method
     21  *   1. Argument reduction:
     22  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
     23  *	Given x, find r and integer k such that
     24  *
     25  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
     26  *
     27  *      Here r will be represented as r = hi-lo for better
     28  *	accuracy.
     29  *
     30  *   2. Approximation of exp(r) by a special rational function on
     31  *	the interval [0,0.34658]:
     32  *	Write
     33  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
     34  *      We use a special Reme algorithm on [0,0.34658] to generate
     35  * 	a polynomial of degree 5 to approximate R. The maximum error
     36  *	of this polynomial approximation is bounded by 2**-59. In
     37  *	other words,
     38  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
     39  *  	(where z=r*r, and the values of P1 to P5 are listed below)
     40  *	and
     41  *	    |                  5          |     -59
     42  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
     43  *	    |                             |
     44  *	The computation of exp(r) thus becomes
     45  *                             2*r
     46  *		exp(r) = 1 + -------
     47  *		              R - r
     48  *                                 r*R1(r)
     49  *		       = 1 + r + ----------- (for better accuracy)
     50  *		                  2 - R1(r)
     51  *	where
     52  *			         2       4             10
     53  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
     54  *
     55  *   3. Scale back to obtain exp(x):
     56  *	From step 1, we have
     57  *	   exp(x) = 2^k * exp(r)
     58  *
     59  * Special cases:
     60  *	exp(INF) is INF, exp(NaN) is NaN;
     61  *	exp(-INF) is 0, and
     62  *	for finite argument, only exp(0)=1 is exact.
     63  *
     64  * Accuracy:
     65  *	according to an error analysis, the error is always less than
     66  *	1 ulp (unit in the last place).
     67  *
     68  * Misc. info.
     69  *	For IEEE double
     70  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
     71  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
     72  *
     73  * Constants:
     74  * The hexadecimal values are the intended ones for the following
     75  * constants. The decimal values may be used, provided that the
     76  * compiler will convert from decimal to binary accurately enough
     77  * to produce the hexadecimal values shown.
     78  */
     79 
     80 #include "math.h"
     81 #include "math_private.h"
     82 
     83 static const double
     84 one	= 1.0,
     85 halF[2]	= {0.5,-0.5,},
     86 huge	= 1.0e+300,
     87 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
     88 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
     89 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
     90 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
     91 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
     92 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
     93 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
     94 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
     95 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
     96 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
     97 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
     98 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
     99 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
    100 
    101 
    102 double
    103 __ieee754_exp(double x)	/* default IEEE double exp */
    104 {
    105 	double y,hi=0.0,lo=0.0,c,t;
    106 	int32_t k=0,xsb;
    107 	u_int32_t hx;
    108 
    109 	GET_HIGH_WORD(hx,x);
    110 	xsb = (hx>>31)&1;		/* sign bit of x */
    111 	hx &= 0x7fffffff;		/* high word of |x| */
    112 
    113     /* filter out non-finite argument */
    114 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
    115             if(hx>=0x7ff00000) {
    116 	        u_int32_t lx;
    117 		GET_LOW_WORD(lx,x);
    118 		if(((hx&0xfffff)|lx)!=0)
    119 		     return x+x; 		/* NaN */
    120 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
    121 	    }
    122 	    if(x > o_threshold) return huge*huge; /* overflow */
    123 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
    124 	}
    125 
    126     /* argument reduction */
    127 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
    128 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
    129 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
    130 	    } else {
    131 		k  = invln2*x+halF[xsb];
    132 		t  = k;
    133 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
    134 		lo = t*ln2LO[0];
    135 	    }
    136 	    x  = hi - lo;
    137 	}
    138 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
    139 	    if(huge+x>one) return one+x;/* trigger inexact */
    140 	}
    141 	else k = 0;
    142 
    143     /* x is now in primary range */
    144 	t  = x*x;
    145 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    146 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
    147 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
    148 	if(k >= -1021) {
    149 	    u_int32_t hy;
    150 	    GET_HIGH_WORD(hy,y);
    151 	    SET_HIGH_WORD(y,hy+(k<<20));	/* add k to y's exponent */
    152 	    return y;
    153 	} else {
    154 	    u_int32_t hy;
    155 	    GET_HIGH_WORD(hy,y);
    156 	    SET_HIGH_WORD(y,hy+((k+1000)<<20));	/* add k to y's exponent */
    157 	    return y*twom1000;
    158 	}
    159 }