vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_hypot.c (3306B)


      1 /* @(#)e_hypot.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #ifndef lint
     14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_hypot.c,v 1.8 2002/05/28 18:15:03 alfred Exp $";
     15 #endif
     16 
     17 /* __ieee754_hypot(x,y)
     18  *
     19  * Method :
     20  *	If (assume round-to-nearest) z=x*x+y*y
     21  *	has error less than sqrt(2)/2 ulp, than
     22  *	sqrt(z) has error less than 1 ulp (exercise).
     23  *
     24  *	So, compute sqrt(x*x+y*y) with some care as
     25  *	follows to get the error below 1 ulp:
     26  *
     27  *	Assume x>y>0;
     28  *	(if possible, set rounding to round-to-nearest)
     29  *	1. if x > 2y  use
     30  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
     31  *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
     32  *	2. if x <= 2y use
     33  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
     34  *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
     35  *	y1= y with lower 32 bits chopped, y2 = y-y1.
     36  *
     37  *	NOTE: scaling may be necessary if some argument is too
     38  *	      large or too tiny
     39  *
     40  * Special cases:
     41  *	hypot(x,y) is INF if x or y is +INF or -INF; else
     42  *	hypot(x,y) is NAN if x or y is NAN.
     43  *
     44  * Accuracy:
     45  * 	hypot(x,y) returns sqrt(x^2+y^2) with error less
     46  * 	than 1 ulps (units in the last place)
     47  */
     48 
     49 #include "math.h"
     50 #include "math_private.h"
     51 
     52 double
     53 __ieee754_hypot(double x, double y)
     54 {
     55 	double a=x,b=y,t1,t2,y1,y2,w;
     56 	int32_t j,k,ha,hb;
     57 
     58 	GET_HIGH_WORD(ha,x);
     59 	ha &= 0x7fffffff;
     60 	GET_HIGH_WORD(hb,y);
     61 	hb &= 0x7fffffff;
     62 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
     63 	SET_HIGH_WORD(a,ha);	/* a <- |a| */
     64 	SET_HIGH_WORD(b,hb);	/* b <- |b| */
     65 	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
     66 	k=0;
     67 	if(ha > 0x5f300000) {	/* a>2**500 */
     68 	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
     69 	       u_int32_t low;
     70 	       w = a+b;			/* for sNaN */
     71 	       GET_LOW_WORD(low,a);
     72 	       if(((ha&0xfffff)|low)==0) w = a;
     73 	       GET_LOW_WORD(low,b);
     74 	       if(((hb^0x7ff00000)|low)==0) w = b;
     75 	       return w;
     76 	   }
     77 	   /* scale a and b by 2**-600 */
     78 	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
     79 	   SET_HIGH_WORD(a,ha);
     80 	   SET_HIGH_WORD(b,hb);
     81 	}
     82 	if(hb < 0x20b00000) {	/* b < 2**-500 */
     83 	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */
     84 	        u_int32_t low;
     85 		GET_LOW_WORD(low,b);
     86 		if((hb|low)==0) return a;
     87 		t1=0;
     88 		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
     89 		b *= t1;
     90 		a *= t1;
     91 		k -= 1022;
     92 	    } else {		/* scale a and b by 2^600 */
     93 	        ha += 0x25800000; 	/* a *= 2^600 */
     94 		hb += 0x25800000;	/* b *= 2^600 */
     95 		k -= 600;
     96 		SET_HIGH_WORD(a,ha);
     97 		SET_HIGH_WORD(b,hb);
     98 	    }
     99 	}
    100     /* medium size a and b */
    101 	w = a-b;
    102 	if (w>b) {
    103 	    t1 = 0;
    104 	    SET_HIGH_WORD(t1,ha);
    105 	    t2 = a-t1;
    106 	    w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
    107 	} else {
    108 	    a  = a+a;
    109 	    y1 = 0;
    110 	    SET_HIGH_WORD(y1,hb);
    111 	    y2 = b - y1;
    112 	    t1 = 0;
    113 	    SET_HIGH_WORD(t1,ha+0x00100000);
    114 	    t2 = a - t1;
    115 	    w  = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
    116 	}
    117 	if(k!=0) {
    118 	    u_int32_t high;
    119 	    t1 = 1.0;
    120 	    GET_HIGH_WORD(high,t1);
    121 	    SET_HIGH_WORD(t1,high+(k<<20));
    122 	    return t1*w;
    123 	} else return w;
    124 }