vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_j0f.c (10517B)


      1 /* e_j0f.c -- float version of e_j0.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
      3  */
      4 
      5 /*
      6  * ====================================================
      7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      8  *
      9  * Developed at SunPro, a Sun Microsystems, Inc. business.
     10  * Permission to use, copy, modify, and distribute this
     11  * software is freely granted, provided that this notice
     12  * is preserved.
     13  * ====================================================
     14  */
     15 
     16 #ifndef lint
     17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j0f.c,v 1.7 2002/05/28 18:15:03 alfred Exp $";
     18 #endif
     19 
     20 #include "math.h"
     21 #include "math_private.h"
     22 
     23 static float pzerof(float), qzerof(float);
     24 
     25 static const float
     26 huge 	= 1e30,
     27 one	= 1.0,
     28 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
     29 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
     30  		/* R0/S0 on [0, 2.00] */
     31 R02  =  1.5625000000e-02, /* 0x3c800000 */
     32 R03  = -1.8997929874e-04, /* 0xb947352e */
     33 R04  =  1.8295404516e-06, /* 0x35f58e88 */
     34 R05  = -4.6183270541e-09, /* 0xb19eaf3c */
     35 S01  =  1.5619102865e-02, /* 0x3c7fe744 */
     36 S02  =  1.1692678527e-04, /* 0x38f53697 */
     37 S03  =  5.1354652442e-07, /* 0x3509daa6 */
     38 S04  =  1.1661400734e-09; /* 0x30a045e8 */
     39 
     40 static const float zero = 0.0;
     41 
     42 float
     43 __ieee754_j0f(float x)
     44 {
     45 	float z, s,c,ss,cc,r,u,v;
     46 	int32_t hx,ix;
     47 
     48 	GET_FLOAT_WORD(hx,x);
     49 	ix = hx&0x7fffffff;
     50 	if(ix>=0x7f800000) return one/(x*x);
     51 	x = fabsf(x);
     52 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
     53 		s = sinf(x);
     54 		c = cosf(x);
     55 		ss = s-c;
     56 		cc = s+c;
     57 		if(ix<0x7f000000) {  /* make sure x+x not overflow */
     58 		    z = -cosf(x+x);
     59 		    if ((s*c)<zero) cc = z/ss;
     60 		    else 	    ss = z/cc;
     61 		}
     62 	/*
     63 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
     64 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
     65 	 */
     66 		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
     67 		else {
     68 		    u = pzerof(x); v = qzerof(x);
     69 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
     70 		}
     71 		return z;
     72 	}
     73 	if(ix<0x39000000) {	/* |x| < 2**-13 */
     74 	    if(huge+x>one) {	/* raise inexact if x != 0 */
     75 	        if(ix<0x32000000) return one;	/* |x|<2**-27 */
     76 	        else 	      return one - (float)0.25*x*x;
     77 	    }
     78 	}
     79 	z = x*x;
     80 	r =  z*(R02+z*(R03+z*(R04+z*R05)));
     81 	s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
     82 	if(ix < 0x3F800000) {	/* |x| < 1.00 */
     83 	    return one + z*((float)-0.25+(r/s));
     84 	} else {
     85 	    u = (float)0.5*x;
     86 	    return((one+u)*(one-u)+z*(r/s));
     87 	}
     88 }
     89 
     90 static const float
     91 u00  = -7.3804296553e-02, /* 0xbd9726b5 */
     92 u01  =  1.7666645348e-01, /* 0x3e34e80d */
     93 u02  = -1.3818567619e-02, /* 0xbc626746 */
     94 u03  =  3.4745343146e-04, /* 0x39b62a69 */
     95 u04  = -3.8140706238e-06, /* 0xb67ff53c */
     96 u05  =  1.9559013964e-08, /* 0x32a802ba */
     97 u06  = -3.9820518410e-11, /* 0xae2f21eb */
     98 v01  =  1.2730483897e-02, /* 0x3c509385 */
     99 v02  =  7.6006865129e-05, /* 0x389f65e0 */
    100 v03  =  2.5915085189e-07, /* 0x348b216c */
    101 v04  =  4.4111031494e-10; /* 0x2ff280c2 */
    102 
    103 float
    104 __ieee754_y0f(float x)
    105 {
    106 	float z, s,c,ss,cc,u,v;
    107 	int32_t hx,ix;
    108 
    109 	GET_FLOAT_WORD(hx,x);
    110         ix = 0x7fffffff&hx;
    111     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
    112 	if(ix>=0x7f800000) return  one/(x+x*x);
    113         if(ix==0) return -one/zero;
    114         if(hx<0) return zero/zero;
    115         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
    116         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
    117          * where x0 = x-pi/4
    118          *      Better formula:
    119          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
    120          *                      =  1/sqrt(2) * (sin(x) + cos(x))
    121          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    122          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    123          * To avoid cancellation, use
    124          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    125          * to compute the worse one.
    126          */
    127                 s = sinf(x);
    128                 c = cosf(x);
    129                 ss = s-c;
    130                 cc = s+c;
    131 	/*
    132 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
    133 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
    134 	 */
    135                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
    136                     z = -cosf(x+x);
    137                     if ((s*c)<zero) cc = z/ss;
    138                     else            ss = z/cc;
    139                 }
    140                 if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
    141                 else {
    142                     u = pzerof(x); v = qzerof(x);
    143                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
    144                 }
    145                 return z;
    146 	}
    147 	if(ix<=0x32000000) {	/* x < 2**-27 */
    148 	    return(u00 + tpi*__ieee754_logf(x));
    149 	}
    150 	z = x*x;
    151 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
    152 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
    153 	return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
    154 }
    155 
    156 /* The asymptotic expansions of pzero is
    157  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
    158  * For x >= 2, We approximate pzero by
    159  * 	pzero(x) = 1 + (R/S)
    160  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
    161  * 	  S = 1 + pS0*s^2 + ... + pS4*s^10
    162  * and
    163  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
    164  */
    165 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    166   0.0000000000e+00, /* 0x00000000 */
    167  -7.0312500000e-02, /* 0xbd900000 */
    168  -8.0816707611e+00, /* 0xc1014e86 */
    169  -2.5706311035e+02, /* 0xc3808814 */
    170  -2.4852163086e+03, /* 0xc51b5376 */
    171  -5.2530439453e+03, /* 0xc5a4285a */
    172 };
    173 static const float pS8[5] = {
    174   1.1653436279e+02, /* 0x42e91198 */
    175   3.8337448730e+03, /* 0x456f9beb */
    176   4.0597855469e+04, /* 0x471e95db */
    177   1.1675296875e+05, /* 0x47e4087c */
    178   4.7627726562e+04, /* 0x473a0bba */
    179 };
    180 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    181  -1.1412546255e-11, /* 0xad48c58a */
    182  -7.0312492549e-02, /* 0xbd8fffff */
    183  -4.1596107483e+00, /* 0xc0851b88 */
    184  -6.7674766541e+01, /* 0xc287597b */
    185  -3.3123129272e+02, /* 0xc3a59d9b */
    186  -3.4643338013e+02, /* 0xc3ad3779 */
    187 };
    188 static const float pS5[5] = {
    189   6.0753936768e+01, /* 0x42730408 */
    190   1.0512523193e+03, /* 0x44836813 */
    191   5.9789707031e+03, /* 0x45bad7c4 */
    192   9.6254453125e+03, /* 0x461665c8 */
    193   2.4060581055e+03, /* 0x451660ee */
    194 };
    195 
    196 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    197  -2.5470459075e-09, /* 0xb12f081b */
    198  -7.0311963558e-02, /* 0xbd8fffb8 */
    199  -2.4090321064e+00, /* 0xc01a2d95 */
    200  -2.1965976715e+01, /* 0xc1afba52 */
    201  -5.8079170227e+01, /* 0xc2685112 */
    202  -3.1447946548e+01, /* 0xc1fb9565 */
    203 };
    204 static const float pS3[5] = {
    205   3.5856033325e+01, /* 0x420f6c94 */
    206   3.6151397705e+02, /* 0x43b4c1ca */
    207   1.1936077881e+03, /* 0x44953373 */
    208   1.1279968262e+03, /* 0x448cffe6 */
    209   1.7358093262e+02, /* 0x432d94b8 */
    210 };
    211 
    212 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    213  -8.8753431271e-08, /* 0xb3be98b7 */
    214  -7.0303097367e-02, /* 0xbd8ffb12 */
    215  -1.4507384300e+00, /* 0xbfb9b1cc */
    216  -7.6356959343e+00, /* 0xc0f4579f */
    217  -1.1193166733e+01, /* 0xc1331736 */
    218  -3.2336456776e+00, /* 0xc04ef40d */
    219 };
    220 static const float pS2[5] = {
    221   2.2220300674e+01, /* 0x41b1c32d */
    222   1.3620678711e+02, /* 0x430834f0 */
    223   2.7047027588e+02, /* 0x43873c32 */
    224   1.5387539673e+02, /* 0x4319e01a */
    225   1.4657617569e+01, /* 0x416a859a */
    226 };
    227 
    228 	static float pzerof(float x)
    229 {
    230 	const float *p,*q;
    231 	float z,r,s;
    232 	int32_t ix;
    233 	GET_FLOAT_WORD(ix,x);
    234 	ix &= 0x7fffffff;
    235 	if(ix>=0x41000000)     {p = pR8; q= pS8;}
    236 	else if(ix>=0x40f71c58){p = pR5; q= pS5;}
    237 	else if(ix>=0x4036db68){p = pR3; q= pS3;}
    238 	else if(ix>=0x40000000){p = pR2; q= pS2;}
    239 	z = one/(x*x);
    240 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    241 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    242 	return one+ r/s;
    243 }
    244 
    245 
    246 /* For x >= 8, the asymptotic expansions of qzero is
    247  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
    248  * We approximate pzero by
    249  * 	qzero(x) = s*(-1.25 + (R/S))
    250  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
    251  * 	  S = 1 + qS0*s^2 + ... + qS5*s^12
    252  * and
    253  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
    254  */
    255 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    256   0.0000000000e+00, /* 0x00000000 */
    257   7.3242187500e-02, /* 0x3d960000 */
    258   1.1768206596e+01, /* 0x413c4a93 */
    259   5.5767340088e+02, /* 0x440b6b19 */
    260   8.8591972656e+03, /* 0x460a6cca */
    261   3.7014625000e+04, /* 0x471096a0 */
    262 };
    263 static const float qS8[6] = {
    264   1.6377603149e+02, /* 0x4323c6aa */
    265   8.0983447266e+03, /* 0x45fd12c2 */
    266   1.4253829688e+05, /* 0x480b3293 */
    267   8.0330925000e+05, /* 0x49441ed4 */
    268   8.4050156250e+05, /* 0x494d3359 */
    269  -3.4389928125e+05, /* 0xc8a7eb69 */
    270 };
    271 
    272 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    273   1.8408595828e-11, /* 0x2da1ec79 */
    274   7.3242180049e-02, /* 0x3d95ffff */
    275   5.8356351852e+00, /* 0x40babd86 */
    276   1.3511157227e+02, /* 0x43071c90 */
    277   1.0272437744e+03, /* 0x448067cd */
    278   1.9899779053e+03, /* 0x44f8bf4b */
    279 };
    280 static const float qS5[6] = {
    281   8.2776611328e+01, /* 0x42a58da0 */
    282   2.0778142090e+03, /* 0x4501dd07 */
    283   1.8847289062e+04, /* 0x46933e94 */
    284   5.6751113281e+04, /* 0x475daf1d */
    285   3.5976753906e+04, /* 0x470c88c1 */
    286  -5.3543427734e+03, /* 0xc5a752be */
    287 };
    288 
    289 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
    290   4.3774099900e-09, /* 0x3196681b */
    291   7.3241114616e-02, /* 0x3d95ff70 */
    292   3.3442313671e+00, /* 0x405607e3 */
    293   4.2621845245e+01, /* 0x422a7cc5 */
    294   1.7080809021e+02, /* 0x432acedf */
    295   1.6673394775e+02, /* 0x4326bbe4 */
    296 };
    297 static const float qS3[6] = {
    298   4.8758872986e+01, /* 0x42430916 */
    299   7.0968920898e+02, /* 0x44316c1c */
    300   3.7041481934e+03, /* 0x4567825f */
    301   6.4604252930e+03, /* 0x45c9e367 */
    302   2.5163337402e+03, /* 0x451d4557 */
    303  -1.4924745178e+02, /* 0xc3153f59 */
    304 };
    305 
    306 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    307   1.5044444979e-07, /* 0x342189db */
    308   7.3223426938e-02, /* 0x3d95f62a */
    309   1.9981917143e+00, /* 0x3fffc4bf */
    310   1.4495602608e+01, /* 0x4167edfd */
    311   3.1666231155e+01, /* 0x41fd5471 */
    312   1.6252708435e+01, /* 0x4182058c */
    313 };
    314 static const float qS2[6] = {
    315   3.0365585327e+01, /* 0x41f2ecb8 */
    316   2.6934811401e+02, /* 0x4386ac8f */
    317   8.4478375244e+02, /* 0x44533229 */
    318   8.8293585205e+02, /* 0x445cbbe5 */
    319   2.1266638184e+02, /* 0x4354aa98 */
    320  -5.3109550476e+00, /* 0xc0a9f358 */
    321 };
    322 
    323 	static float qzerof(float x)
    324 {
    325 	const float *p,*q;
    326 	float s,r,z;
    327 	int32_t ix;
    328 	GET_FLOAT_WORD(ix,x);
    329 	ix &= 0x7fffffff;
    330 	if(ix>=0x41000000)     {p = qR8; q= qS8;}
    331 	else if(ix>=0x40f71c58){p = qR5; q= qS5;}
    332 	else if(ix>=0x4036db68){p = qR3; q= qS3;}
    333 	else if(ix>=0x40000000){p = qR2; q= qS2;}
    334 	z = one/(x*x);
    335 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    336 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    337 	return (-(float).125 + r/s)/x;
    338 }