vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

e_j1f.c (10208B)


      1 /* e_j1f.c -- float version of e_j1.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
      3  */
      4 
      5 /*
      6  * ====================================================
      7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      8  *
      9  * Developed at SunPro, a Sun Microsystems, Inc. business.
     10  * Permission to use, copy, modify, and distribute this
     11  * software is freely granted, provided that this notice
     12  * is preserved.
     13  * ====================================================
     14  */
     15 
     16 #ifndef lint
     17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_j1f.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
     18 #endif
     19 
     20 #include "math.h"
     21 #include "math_private.h"
     22 
     23 static float ponef(float), qonef(float);
     24 
     25 static const float
     26 huge    = 1e30,
     27 one	= 1.0,
     28 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
     29 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
     30 	/* R0/S0 on [0,2] */
     31 r00  = -6.2500000000e-02, /* 0xbd800000 */
     32 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
     33 r02  = -1.5995563444e-05, /* 0xb7862e36 */
     34 r03  =  4.9672799207e-08, /* 0x335557d2 */
     35 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
     36 s02  =  1.8594678841e-04, /* 0x3942fab6 */
     37 s03  =  1.1771846857e-06, /* 0x359dffc2 */
     38 s04  =  5.0463624390e-09, /* 0x31ad6446 */
     39 s05  =  1.2354227016e-11; /* 0x2d59567e */
     40 
     41 static const float zero    = 0.0;
     42 
     43 float
     44 __ieee754_j1f(float x)
     45 {
     46 	float z, s,c,ss,cc,r,u,v,y;
     47 	int32_t hx,ix;
     48 
     49 	GET_FLOAT_WORD(hx,x);
     50 	ix = hx&0x7fffffff;
     51 	if(ix>=0x7f800000) return one/x;
     52 	y = fabsf(x);
     53 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
     54 		s = sinf(y);
     55 		c = cosf(y);
     56 		ss = -s-c;
     57 		cc = s-c;
     58 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
     59 		    z = cosf(y+y);
     60 		    if ((s*c)>zero) cc = z/ss;
     61 		    else 	    ss = z/cc;
     62 		}
     63 	/*
     64 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
     65 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
     66 	 */
     67 		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
     68 		else {
     69 		    u = ponef(y); v = qonef(y);
     70 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
     71 		}
     72 		if(hx<0) return -z;
     73 		else  	 return  z;
     74 	}
     75 	if(ix<0x32000000) {	/* |x|<2**-27 */
     76 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
     77 	}
     78 	z = x*x;
     79 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
     80 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
     81 	r *= x;
     82 	return(x*(float)0.5+r/s);
     83 }
     84 
     85 static const float U0[5] = {
     86  -1.9605709612e-01, /* 0xbe48c331 */
     87   5.0443872809e-02, /* 0x3d4e9e3c */
     88  -1.9125689287e-03, /* 0xbafaaf2a */
     89   2.3525259166e-05, /* 0x37c5581c */
     90  -9.1909917899e-08, /* 0xb3c56003 */
     91 };
     92 static const float V0[5] = {
     93   1.9916731864e-02, /* 0x3ca3286a */
     94   2.0255257550e-04, /* 0x3954644b */
     95   1.3560879779e-06, /* 0x35b602d4 */
     96   6.2274145840e-09, /* 0x31d5f8eb */
     97   1.6655924903e-11, /* 0x2d9281cf */
     98 };
     99 
    100 float
    101 __ieee754_y1f(float x)
    102 {
    103 	float z, s,c,ss,cc,u,v;
    104 	int32_t hx,ix;
    105 
    106 	GET_FLOAT_WORD(hx,x);
    107         ix = 0x7fffffff&hx;
    108     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
    109 	if(ix>=0x7f800000) return  one/(x+x*x);
    110         if(ix==0) return -one/zero;
    111         if(hx<0) return zero/zero;
    112         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
    113                 s = sinf(x);
    114                 c = cosf(x);
    115                 ss = -s-c;
    116                 cc = s-c;
    117                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
    118                     z = cosf(x+x);
    119                     if ((s*c)>zero) cc = z/ss;
    120                     else            ss = z/cc;
    121                 }
    122         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    123          * where x0 = x-3pi/4
    124          *      Better formula:
    125          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    126          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    127          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    128          *                      = -1/sqrt(2) * (cos(x) + sin(x))
    129          * To avoid cancellation, use
    130          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    131          * to compute the worse one.
    132          */
    133                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
    134                 else {
    135                     u = ponef(x); v = qonef(x);
    136                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
    137                 }
    138                 return z;
    139         }
    140         if(ix<=0x24800000) {    /* x < 2**-54 */
    141             return(-tpi/x);
    142         }
    143         z = x*x;
    144         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
    145         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
    146         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
    147 }
    148 
    149 /* For x >= 8, the asymptotic expansions of pone is
    150  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
    151  * We approximate pone by
    152  * 	pone(x) = 1 + (R/S)
    153  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    154  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    155  * and
    156  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
    157  */
    158 
    159 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    160   0.0000000000e+00, /* 0x00000000 */
    161   1.1718750000e-01, /* 0x3df00000 */
    162   1.3239480972e+01, /* 0x4153d4ea */
    163   4.1205184937e+02, /* 0x43ce06a3 */
    164   3.8747453613e+03, /* 0x45722bed */
    165   7.9144794922e+03, /* 0x45f753d6 */
    166 };
    167 static const float ps8[5] = {
    168   1.1420736694e+02, /* 0x42e46a2c */
    169   3.6509309082e+03, /* 0x45642ee5 */
    170   3.6956207031e+04, /* 0x47105c35 */
    171   9.7602796875e+04, /* 0x47bea166 */
    172   3.0804271484e+04, /* 0x46f0a88b */
    173 };
    174 
    175 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    176   1.3199052094e-11, /* 0x2d68333f */
    177   1.1718749255e-01, /* 0x3defffff */
    178   6.8027510643e+00, /* 0x40d9b023 */
    179   1.0830818176e+02, /* 0x42d89dca */
    180   5.1763616943e+02, /* 0x440168b7 */
    181   5.2871520996e+02, /* 0x44042dc6 */
    182 };
    183 static const float ps5[5] = {
    184   5.9280597687e+01, /* 0x426d1f55 */
    185   9.9140142822e+02, /* 0x4477d9b1 */
    186   5.3532670898e+03, /* 0x45a74a23 */
    187   7.8446904297e+03, /* 0x45f52586 */
    188   1.5040468750e+03, /* 0x44bc0180 */
    189 };
    190 
    191 static const float pr3[6] = {
    192   3.0250391081e-09, /* 0x314fe10d */
    193   1.1718686670e-01, /* 0x3defffab */
    194   3.9329774380e+00, /* 0x407bb5e7 */
    195   3.5119403839e+01, /* 0x420c7a45 */
    196   9.1055007935e+01, /* 0x42b61c2a */
    197   4.8559066772e+01, /* 0x42423c7c */
    198 };
    199 static const float ps3[5] = {
    200   3.4791309357e+01, /* 0x420b2a4d */
    201   3.3676245117e+02, /* 0x43a86198 */
    202   1.0468714600e+03, /* 0x4482dbe3 */
    203   8.9081134033e+02, /* 0x445eb3ed */
    204   1.0378793335e+02, /* 0x42cf936c */
    205 };
    206 
    207 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    208   1.0771083225e-07, /* 0x33e74ea8 */
    209   1.1717621982e-01, /* 0x3deffa16 */
    210   2.3685150146e+00, /* 0x401795c0 */
    211   1.2242610931e+01, /* 0x4143e1bc */
    212   1.7693971634e+01, /* 0x418d8d41 */
    213   5.0735230446e+00, /* 0x40a25a4d */
    214 };
    215 static const float ps2[5] = {
    216   2.1436485291e+01, /* 0x41ab7dec */
    217   1.2529022980e+02, /* 0x42fa9499 */
    218   2.3227647400e+02, /* 0x436846c7 */
    219   1.1767937469e+02, /* 0x42eb5bd7 */
    220   8.3646392822e+00, /* 0x4105d590 */
    221 };
    222 
    223 	static float ponef(float x)
    224 {
    225 	const float *p,*q;
    226 	float z,r,s;
    227         int32_t ix;
    228 	GET_FLOAT_WORD(ix,x);
    229 	ix &= 0x7fffffff;
    230         if(ix>=0x41000000)     {p = pr8; q= ps8;}
    231         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
    232         else if(ix>=0x4036db68){p = pr3; q= ps3;}
    233         else if(ix>=0x40000000){p = pr2; q= ps2;}
    234         z = one/(x*x);
    235         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    236         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    237         return one+ r/s;
    238 }
    239 
    240 
    241 /* For x >= 8, the asymptotic expansions of qone is
    242  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
    243  * We approximate pone by
    244  * 	qone(x) = s*(0.375 + (R/S))
    245  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    246  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
    247  * and
    248  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
    249  */
    250 
    251 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    252   0.0000000000e+00, /* 0x00000000 */
    253  -1.0253906250e-01, /* 0xbdd20000 */
    254  -1.6271753311e+01, /* 0xc1822c8d */
    255  -7.5960174561e+02, /* 0xc43de683 */
    256  -1.1849806641e+04, /* 0xc639273a */
    257  -4.8438511719e+04, /* 0xc73d3683 */
    258 };
    259 static const float qs8[6] = {
    260   1.6139537048e+02, /* 0x43216537 */
    261   7.8253862305e+03, /* 0x45f48b17 */
    262   1.3387534375e+05, /* 0x4802bcd6 */
    263   7.1965775000e+05, /* 0x492fb29c */
    264   6.6660125000e+05, /* 0x4922be94 */
    265  -2.9449025000e+05, /* 0xc88fcb48 */
    266 };
    267 
    268 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    269  -2.0897993405e-11, /* 0xadb7d219 */
    270  -1.0253904760e-01, /* 0xbdd1fffe */
    271  -8.0564479828e+00, /* 0xc100e736 */
    272  -1.8366960144e+02, /* 0xc337ab6b */
    273  -1.3731937256e+03, /* 0xc4aba633 */
    274  -2.6124443359e+03, /* 0xc523471c */
    275 };
    276 static const float qs5[6] = {
    277   8.1276550293e+01, /* 0x42a28d98 */
    278   1.9917987061e+03, /* 0x44f8f98f */
    279   1.7468484375e+04, /* 0x468878f8 */
    280   4.9851425781e+04, /* 0x4742bb6d */
    281   2.7948074219e+04, /* 0x46da5826 */
    282  -4.7191835938e+03, /* 0xc5937978 */
    283 };
    284 
    285 static const float qr3[6] = {
    286  -5.0783124372e-09, /* 0xb1ae7d4f */
    287  -1.0253783315e-01, /* 0xbdd1ff5b */
    288  -4.6101160049e+00, /* 0xc0938612 */
    289  -5.7847221375e+01, /* 0xc267638e */
    290  -2.2824453735e+02, /* 0xc3643e9a */
    291  -2.1921012878e+02, /* 0xc35b35cb */
    292 };
    293 static const float qs3[6] = {
    294   4.7665153503e+01, /* 0x423ea91e */
    295   6.7386511230e+02, /* 0x4428775e */
    296   3.3801528320e+03, /* 0x45534272 */
    297   5.5477290039e+03, /* 0x45ad5dd5 */
    298   1.9031191406e+03, /* 0x44ede3d0 */
    299  -1.3520118713e+02, /* 0xc3073381 */
    300 };
    301 
    302 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    303  -1.7838172539e-07, /* 0xb43f8932 */
    304  -1.0251704603e-01, /* 0xbdd1f475 */
    305  -2.7522056103e+00, /* 0xc0302423 */
    306  -1.9663616180e+01, /* 0xc19d4f16 */
    307  -4.2325313568e+01, /* 0xc2294d1f */
    308  -2.1371921539e+01, /* 0xc1aaf9b2 */
    309 };
    310 static const float qs2[6] = {
    311   2.9533363342e+01, /* 0x41ec4454 */
    312   2.5298155212e+02, /* 0x437cfb47 */
    313   7.5750280762e+02, /* 0x443d602e */
    314   7.3939318848e+02, /* 0x4438d92a */
    315   1.5594900513e+02, /* 0x431bf2f2 */
    316  -4.9594988823e+00, /* 0xc09eb437 */
    317 };
    318 
    319 	static float qonef(float x)
    320 {
    321 	const float *p,*q;
    322 	float  s,r,z;
    323 	int32_t ix;
    324 	GET_FLOAT_WORD(ix,x);
    325 	ix &= 0x7fffffff;
    326 	if(ix>=0x40200000)     {p = qr8; q= qs8;}
    327 	else if(ix>=0x40f71c58){p = qr5; q= qs5;}
    328 	else if(ix>=0x4036db68){p = qr3; q= qs3;}
    329 	else if(ix>=0x40000000){p = qr2; q= qs2;}
    330 	z = one/(x*x);
    331 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    332 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    333 	return ((float).375 + r/s)/x;
    334 }