k_rem_pio2.c (8327B)
1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */ 2 /* 3 * ==================================================== 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Developed at SunPro, a Sun Microsystems, Inc. business. 7 * Permission to use, copy, modify, and distribute this 8 * software is freely granted, provided that this notice 9 * is preserved. 10 * ==================================================== 11 */ 12 13 #ifndef lint 14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_rem_pio2.c,v 1.6 2002/05/28 17:51:46 alfred Exp $"; 15 #endif 16 17 /* 18 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 19 * double x[],y[]; int e0,nx,prec; int ipio2[]; 20 * 21 * __kernel_rem_pio2 return the last three digits of N with 22 * y = x - N*pi/2 23 * so that |y| < pi/2. 24 * 25 * The method is to compute the integer (mod 8) and fraction parts of 26 * (2/pi)*x without doing the full multiplication. In general we 27 * skip the part of the product that are known to be a huge integer ( 28 * more accurately, = 0 mod 8 ). Thus the number of operations are 29 * independent of the exponent of the input. 30 * 31 * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 32 * 33 * Input parameters: 34 * x[] The input value (must be positive) is broken into nx 35 * pieces of 24-bit integers in double precision format. 36 * x[i] will be the i-th 24 bit of x. The scaled exponent 37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 38 * match x's up to 24 bits. 39 * 40 * Example of breaking a double positive z into x[0]+x[1]+x[2]: 41 * e0 = ilogb(z)-23 42 * z = scalbn(z,-e0) 43 * for i = 0,1,2 44 * x[i] = floor(z) 45 * z = (z-x[i])*2**24 46 * 47 * 48 * y[] ouput result in an array of double precision numbers. 49 * The dimension of y[] is: 50 * 24-bit precision 1 51 * 53-bit precision 2 52 * 64-bit precision 2 53 * 113-bit precision 3 54 * The actual value is the sum of them. Thus for 113-bit 55 * precison, one may have to do something like: 56 * 57 * long double t,w,r_head, r_tail; 58 * t = (long double)y[2] + (long double)y[1]; 59 * w = (long double)y[0]; 60 * r_head = t+w; 61 * r_tail = w - (r_head - t); 62 * 63 * e0 The exponent of x[0] 64 * 65 * nx dimension of x[] 66 * 67 * prec an integer indicating the precision: 68 * 0 24 bits (single) 69 * 1 53 bits (double) 70 * 2 64 bits (extended) 71 * 3 113 bits (quad) 72 * 73 * ipio2[] 74 * integer array, contains the (24*i)-th to (24*i+23)-th 75 * bit of 2/pi after binary point. The corresponding 76 * floating value is 77 * 78 * ipio2[i] * 2^(-24(i+1)). 79 * 80 * External function: 81 * double scalbn(), floor(); 82 * 83 * 84 * Here is the description of some local variables: 85 * 86 * jk jk+1 is the initial number of terms of ipio2[] needed 87 * in the computation. The recommended value is 2,3,4, 88 * 6 for single, double, extended,and quad. 89 * 90 * jz local integer variable indicating the number of 91 * terms of ipio2[] used. 92 * 93 * jx nx - 1 94 * 95 * jv index for pointing to the suitable ipio2[] for the 96 * computation. In general, we want 97 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 98 * is an integer. Thus 99 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 100 * Hence jv = max(0,(e0-3)/24). 101 * 102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 103 * 104 * q[] double array with integral value, representing the 105 * 24-bits chunk of the product of x and 2/pi. 106 * 107 * q0 the corresponding exponent of q[0]. Note that the 108 * exponent for q[i] would be q0-24*i. 109 * 110 * PIo2[] double precision array, obtained by cutting pi/2 111 * into 24 bits chunks. 112 * 113 * f[] ipio2[] in floating point 114 * 115 * iq[] integer array by breaking up q[] in 24-bits chunk. 116 * 117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 118 * 119 * ih integer. If >0 it indicates q[] is >= 0.5, hence 120 * it also indicates the *sign* of the result. 121 * 122 */ 123 124 125 /* 126 * Constants: 127 * The hexadecimal values are the intended ones for the following 128 * constants. The decimal values may be used, provided that the 129 * compiler will convert from decimal to binary accurately enough 130 * to produce the hexadecimal values shown. 131 */ 132 133 #include "math.h" 134 #include "math_private.h" 135 136 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ 137 138 static const double PIo2[] = { 139 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 140 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 141 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 142 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 143 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 144 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 145 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 146 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 147 }; 148 149 static const double 150 zero = 0.0, 151 one = 1.0, 152 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 153 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 154 155 int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) 156 { 157 int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 158 double z,fw,f[20],fq[20],q[20]; 159 160 /* initialize jk*/ 161 jk = init_jk[prec]; 162 jp = jk; 163 164 /* determine jx,jv,q0, note that 3>q0 */ 165 jx = nx-1; 166 jv = (e0-3)/24; if(jv<0) jv=0; 167 q0 = e0-24*(jv+1); 168 169 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 170 j = jv-jx; m = jx+jk; 171 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; 172 173 /* compute q[0],q[1],...q[jk] */ 174 for (i=0;i<=jk;i++) { 175 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; 176 } 177 178 jz = jk; 179 recompute: 180 /* distill q[] into iq[] reversingly */ 181 for(i=0,j=jz,z=q[jz];j>0;i++,j--) { 182 fw = (double)((int32_t)(twon24* z)); 183 iq[i] = (int32_t)(z-two24*fw); 184 z = q[j-1]+fw; 185 } 186 187 /* compute n */ 188 z = scalbn(z,q0); /* actual value of z */ 189 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 190 n = (int32_t) z; 191 z -= (double)n; 192 ih = 0; 193 if(q0>0) { /* need iq[jz-1] to determine n */ 194 i = (iq[jz-1]>>(24-q0)); n += i; 195 iq[jz-1] -= i<<(24-q0); 196 ih = iq[jz-1]>>(23-q0); 197 } 198 else if(q0==0) ih = iq[jz-1]>>23; 199 else if(z>=0.5) ih=2; 200 201 if(ih>0) { /* q > 0.5 */ 202 n += 1; carry = 0; 203 for(i=0;i<jz ;i++) { /* compute 1-q */ 204 j = iq[i]; 205 if(carry==0) { 206 if(j!=0) { 207 carry = 1; iq[i] = 0x1000000- j; 208 } 209 } else iq[i] = 0xffffff - j; 210 } 211 if(q0>0) { /* rare case: chance is 1 in 12 */ 212 switch(q0) { 213 case 1: 214 iq[jz-1] &= 0x7fffff; break; 215 case 2: 216 iq[jz-1] &= 0x3fffff; break; 217 } 218 } 219 if(ih==2) { 220 z = one - z; 221 if(carry!=0) z -= scalbn(one,q0); 222 } 223 } 224 225 /* check if recomputation is needed */ 226 if(z==zero) { 227 j = 0; 228 for (i=jz-1;i>=jk;i--) j |= iq[i]; 229 if(j==0) { /* need recomputation */ 230 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ 231 232 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ 233 f[jx+i] = (double) ipio2[jv+i]; 234 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; 235 q[i] = fw; 236 } 237 jz += k; 238 goto recompute; 239 } 240 } 241 242 /* chop off zero terms */ 243 if(z==0.0) { 244 jz -= 1; q0 -= 24; 245 while(iq[jz]==0) { jz--; q0-=24;} 246 } else { /* break z into 24-bit if necessary */ 247 z = scalbn(z,-q0); 248 if(z>=two24) { 249 fw = (double)((int32_t)(twon24*z)); 250 iq[jz] = (int32_t)(z-two24*fw); 251 jz += 1; q0 += 24; 252 iq[jz] = (int32_t) fw; 253 } else iq[jz] = (int32_t) z ; 254 } 255 256 /* convert integer "bit" chunk to floating-point value */ 257 fw = scalbn(one,q0); 258 for(i=jz;i>=0;i--) { 259 q[i] = fw*(double)iq[i]; fw*=twon24; 260 } 261 262 /* compute PIo2[0,...,jp]*q[jz,...,0] */ 263 for(i=jz;i>=0;i--) { 264 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; 265 fq[jz-i] = fw; 266 } 267 268 /* compress fq[] into y[] */ 269 switch(prec) { 270 case 0: 271 fw = 0.0; 272 for (i=jz;i>=0;i--) fw += fq[i]; 273 y[0] = (ih==0)? fw: -fw; 274 break; 275 case 1: 276 case 2: 277 fw = 0.0; 278 for (i=jz;i>=0;i--) fw += fq[i]; 279 y[0] = (ih==0)? fw: -fw; 280 fw = fq[0]-fw; 281 for (i=1;i<=jz;i++) fw += fq[i]; 282 y[1] = (ih==0)? fw: -fw; 283 break; 284 case 3: /* painful */ 285 for (i=jz;i>0;i--) { 286 fw = fq[i-1]+fq[i]; 287 fq[i] += fq[i-1]-fw; 288 fq[i-1] = fw; 289 } 290 for (i=jz;i>1;i--) { 291 fw = fq[i-1]+fq[i]; 292 fq[i] += fq[i-1]-fw; 293 fq[i-1] = fw; 294 } 295 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 296 if(ih==0) { 297 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 298 } else { 299 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 300 } 301 } 302 return n&7; 303 }