vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

k_rem_pio2.c (8327B)


      1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
      2 /*
      3  * ====================================================
      4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  */
     12 
     13 #ifndef lint
     14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_rem_pio2.c,v 1.6 2002/05/28 17:51:46 alfred Exp $";
     15 #endif
     16 
     17 /*
     18  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
     19  * double x[],y[]; int e0,nx,prec; int ipio2[];
     20  *
     21  * __kernel_rem_pio2 return the last three digits of N with
     22  *		y = x - N*pi/2
     23  * so that |y| < pi/2.
     24  *
     25  * The method is to compute the integer (mod 8) and fraction parts of
     26  * (2/pi)*x without doing the full multiplication. In general we
     27  * skip the part of the product that are known to be a huge integer (
     28  * more accurately, = 0 mod 8 ). Thus the number of operations are
     29  * independent of the exponent of the input.
     30  *
     31  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
     32  *
     33  * Input parameters:
     34  * 	x[]	The input value (must be positive) is broken into nx
     35  *		pieces of 24-bit integers in double precision format.
     36  *		x[i] will be the i-th 24 bit of x. The scaled exponent
     37  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
     38  *		match x's up to 24 bits.
     39  *
     40  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
     41  *			e0 = ilogb(z)-23
     42  *			z  = scalbn(z,-e0)
     43  *		for i = 0,1,2
     44  *			x[i] = floor(z)
     45  *			z    = (z-x[i])*2**24
     46  *
     47  *
     48  *	y[]	ouput result in an array of double precision numbers.
     49  *		The dimension of y[] is:
     50  *			24-bit  precision	1
     51  *			53-bit  precision	2
     52  *			64-bit  precision	2
     53  *			113-bit precision	3
     54  *		The actual value is the sum of them. Thus for 113-bit
     55  *		precison, one may have to do something like:
     56  *
     57  *		long double t,w,r_head, r_tail;
     58  *		t = (long double)y[2] + (long double)y[1];
     59  *		w = (long double)y[0];
     60  *		r_head = t+w;
     61  *		r_tail = w - (r_head - t);
     62  *
     63  *	e0	The exponent of x[0]
     64  *
     65  *	nx	dimension of x[]
     66  *
     67  *  	prec	an integer indicating the precision:
     68  *			0	24  bits (single)
     69  *			1	53  bits (double)
     70  *			2	64  bits (extended)
     71  *			3	113 bits (quad)
     72  *
     73  *	ipio2[]
     74  *		integer array, contains the (24*i)-th to (24*i+23)-th
     75  *		bit of 2/pi after binary point. The corresponding
     76  *		floating value is
     77  *
     78  *			ipio2[i] * 2^(-24(i+1)).
     79  *
     80  * External function:
     81  *	double scalbn(), floor();
     82  *
     83  *
     84  * Here is the description of some local variables:
     85  *
     86  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
     87  *		in the computation. The recommended value is 2,3,4,
     88  *		6 for single, double, extended,and quad.
     89  *
     90  * 	jz	local integer variable indicating the number of
     91  *		terms of ipio2[] used.
     92  *
     93  *	jx	nx - 1
     94  *
     95  *	jv	index for pointing to the suitable ipio2[] for the
     96  *		computation. In general, we want
     97  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
     98  *		is an integer. Thus
     99  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
    100  *		Hence jv = max(0,(e0-3)/24).
    101  *
    102  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
    103  *
    104  * 	q[]	double array with integral value, representing the
    105  *		24-bits chunk of the product of x and 2/pi.
    106  *
    107  *	q0	the corresponding exponent of q[0]. Note that the
    108  *		exponent for q[i] would be q0-24*i.
    109  *
    110  *	PIo2[]	double precision array, obtained by cutting pi/2
    111  *		into 24 bits chunks.
    112  *
    113  *	f[]	ipio2[] in floating point
    114  *
    115  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
    116  *
    117  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
    118  *
    119  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
    120  *		it also indicates the *sign* of the result.
    121  *
    122  */
    123 
    124 
    125 /*
    126  * Constants:
    127  * The hexadecimal values are the intended ones for the following
    128  * constants. The decimal values may be used, provided that the
    129  * compiler will convert from decimal to binary accurately enough
    130  * to produce the hexadecimal values shown.
    131  */
    132 
    133 #include "math.h"
    134 #include "math_private.h"
    135 
    136 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
    137 
    138 static const double PIo2[] = {
    139   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
    140   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
    141   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
    142   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
    143   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
    144   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
    145   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
    146   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
    147 };
    148 
    149 static const double
    150 zero   = 0.0,
    151 one    = 1.0,
    152 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
    153 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
    154 
    155 	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
    156 {
    157 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
    158 	double z,fw,f[20],fq[20],q[20];
    159 
    160     /* initialize jk*/
    161 	jk = init_jk[prec];
    162 	jp = jk;
    163 
    164     /* determine jx,jv,q0, note that 3>q0 */
    165 	jx =  nx-1;
    166 	jv = (e0-3)/24; if(jv<0) jv=0;
    167 	q0 =  e0-24*(jv+1);
    168 
    169     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
    170 	j = jv-jx; m = jx+jk;
    171 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
    172 
    173     /* compute q[0],q[1],...q[jk] */
    174 	for (i=0;i<=jk;i++) {
    175 	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
    176 	}
    177 
    178 	jz = jk;
    179 recompute:
    180     /* distill q[] into iq[] reversingly */
    181 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
    182 	    fw    =  (double)((int32_t)(twon24* z));
    183 	    iq[i] =  (int32_t)(z-two24*fw);
    184 	    z     =  q[j-1]+fw;
    185 	}
    186 
    187     /* compute n */
    188 	z  = scalbn(z,q0);		/* actual value of z */
    189 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
    190 	n  = (int32_t) z;
    191 	z -= (double)n;
    192 	ih = 0;
    193 	if(q0>0) {	/* need iq[jz-1] to determine n */
    194 	    i  = (iq[jz-1]>>(24-q0)); n += i;
    195 	    iq[jz-1] -= i<<(24-q0);
    196 	    ih = iq[jz-1]>>(23-q0);
    197 	}
    198 	else if(q0==0) ih = iq[jz-1]>>23;
    199 	else if(z>=0.5) ih=2;
    200 
    201 	if(ih>0) {	/* q > 0.5 */
    202 	    n += 1; carry = 0;
    203 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
    204 		j = iq[i];
    205 		if(carry==0) {
    206 		    if(j!=0) {
    207 			carry = 1; iq[i] = 0x1000000- j;
    208 		    }
    209 		} else  iq[i] = 0xffffff - j;
    210 	    }
    211 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
    212 	        switch(q0) {
    213 	        case 1:
    214 	    	   iq[jz-1] &= 0x7fffff; break;
    215 	    	case 2:
    216 	    	   iq[jz-1] &= 0x3fffff; break;
    217 	        }
    218 	    }
    219 	    if(ih==2) {
    220 		z = one - z;
    221 		if(carry!=0) z -= scalbn(one,q0);
    222 	    }
    223 	}
    224 
    225     /* check if recomputation is needed */
    226 	if(z==zero) {
    227 	    j = 0;
    228 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
    229 	    if(j==0) { /* need recomputation */
    230 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
    231 
    232 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
    233 		    f[jx+i] = (double) ipio2[jv+i];
    234 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
    235 		    q[i] = fw;
    236 		}
    237 		jz += k;
    238 		goto recompute;
    239 	    }
    240 	}
    241 
    242     /* chop off zero terms */
    243 	if(z==0.0) {
    244 	    jz -= 1; q0 -= 24;
    245 	    while(iq[jz]==0) { jz--; q0-=24;}
    246 	} else { /* break z into 24-bit if necessary */
    247 	    z = scalbn(z,-q0);
    248 	    if(z>=two24) {
    249 		fw = (double)((int32_t)(twon24*z));
    250 		iq[jz] = (int32_t)(z-two24*fw);
    251 		jz += 1; q0 += 24;
    252 		iq[jz] = (int32_t) fw;
    253 	    } else iq[jz] = (int32_t) z ;
    254 	}
    255 
    256     /* convert integer "bit" chunk to floating-point value */
    257 	fw = scalbn(one,q0);
    258 	for(i=jz;i>=0;i--) {
    259 	    q[i] = fw*(double)iq[i]; fw*=twon24;
    260 	}
    261 
    262     /* compute PIo2[0,...,jp]*q[jz,...,0] */
    263 	for(i=jz;i>=0;i--) {
    264 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
    265 	    fq[jz-i] = fw;
    266 	}
    267 
    268     /* compress fq[] into y[] */
    269 	switch(prec) {
    270 	    case 0:
    271 		fw = 0.0;
    272 		for (i=jz;i>=0;i--) fw += fq[i];
    273 		y[0] = (ih==0)? fw: -fw;
    274 		break;
    275 	    case 1:
    276 	    case 2:
    277 		fw = 0.0;
    278 		for (i=jz;i>=0;i--) fw += fq[i];
    279 		y[0] = (ih==0)? fw: -fw;
    280 		fw = fq[0]-fw;
    281 		for (i=1;i<=jz;i++) fw += fq[i];
    282 		y[1] = (ih==0)? fw: -fw;
    283 		break;
    284 	    case 3:	/* painful */
    285 		for (i=jz;i>0;i--) {
    286 		    fw      = fq[i-1]+fq[i];
    287 		    fq[i]  += fq[i-1]-fw;
    288 		    fq[i-1] = fw;
    289 		}
    290 		for (i=jz;i>1;i--) {
    291 		    fw      = fq[i-1]+fq[i];
    292 		    fq[i]  += fq[i-1]-fw;
    293 		    fq[i-1] = fw;
    294 		}
    295 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
    296 		if(ih==0) {
    297 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
    298 		} else {
    299 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
    300 		}
    301 	}
    302 	return n&7;
    303 }