vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

jdhuff.c (20866B)


      1 /*
      2  * jdhuff.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy decoding routines.
      9  *
     10  * Much of the complexity here has to do with supporting input suspension.
     11  * If the data source module demands suspension, we want to be able to back
     12  * up to the start of the current MCU.  To do this, we copy state variables
     13  * into local working storage, and update them back to the permanent
     14  * storage only upon successful completion of an MCU.
     15  */
     16 
     17 #define JPEG_INTERNALS
     18 #include "jinclude.h"
     19 #include "jpeglib.h"
     20 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
     21 
     22 
     23 /*
     24  * Expanded entropy decoder object for Huffman decoding.
     25  *
     26  * The savable_state subrecord contains fields that change within an MCU,
     27  * but must not be updated permanently until we complete the MCU.
     28  */
     29 
     30 typedef struct {
     31   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     32 } savable_state;
     33 
     34 /* This macro is to work around compilers with missing or broken
     35  * structure assignment.  You'll need to fix this code if you have
     36  * such a compiler and you change MAX_COMPS_IN_SCAN.
     37  */
     38 
     39 #ifndef NO_STRUCT_ASSIGN
     40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     41 #else
     42 #if MAX_COMPS_IN_SCAN == 4
     43 #define ASSIGN_STATE(dest,src)  \
     44 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
     45 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     46 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     47 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     48 #endif
     49 #endif
     50 
     51 
     52 typedef struct {
     53   struct jpeg_entropy_decoder pub; /* public fields */
     54 
     55   /* These fields are loaded into local variables at start of each MCU.
     56    * In case of suspension, we exit WITHOUT updating them.
     57    */
     58   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
     59   savable_state saved;		/* Other state at start of MCU */
     60 
     61   /* These fields are NOT loaded into local working state. */
     62   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     63 
     64   /* Pointers to derived tables (these workspaces have image lifespan) */
     65   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     66   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     67 
     68   /* Precalculated info set up by start_pass for use in decode_mcu: */
     69 
     70   /* Pointers to derived tables to be used for each block within an MCU */
     71   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     72   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     73   /* Whether we care about the DC and AC coefficient values for each block */
     74   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
     75   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
     76 } huff_entropy_decoder;
     77 
     78 typedef huff_entropy_decoder * huff_entropy_ptr;
     79 
     80 
     81 /*
     82  * Initialize for a Huffman-compressed scan.
     83  */
     84 
     85 METHODDEF(void)
     86 start_pass_huff_decoder (j_decompress_ptr cinfo)
     87 {
     88   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     89   int ci, blkn, dctbl, actbl;
     90   jpeg_component_info * compptr;
     91 
     92   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     93    * This ought to be an error condition, but we make it a warning because
     94    * there are some baseline files out there with all zeroes in these bytes.
     95    */
     96   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
     97       cinfo->Ah != 0 || cinfo->Al != 0)
     98     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
     99 
    100   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    101     compptr = cinfo->cur_comp_info[ci];
    102     dctbl = compptr->dc_tbl_no;
    103     actbl = compptr->ac_tbl_no;
    104     /* Compute derived values for Huffman tables */
    105     /* We may do this more than once for a table, but it's not expensive */
    106     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
    107 			    & entropy->dc_derived_tbls[dctbl]);
    108     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
    109 			    & entropy->ac_derived_tbls[actbl]);
    110     /* Initialize DC predictions to 0 */
    111     entropy->saved.last_dc_val[ci] = 0;
    112   }
    113 
    114   /* Precalculate decoding info for each block in an MCU of this scan */
    115   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    116     ci = cinfo->MCU_membership[blkn];
    117     compptr = cinfo->cur_comp_info[ci];
    118     /* Precalculate which table to use for each block */
    119     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
    120     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
    121     /* Decide whether we really care about the coefficient values */
    122     if (compptr->component_needed) {
    123       entropy->dc_needed[blkn] = TRUE;
    124       /* we don't need the ACs if producing a 1/8th-size image */
    125       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
    126     } else {
    127       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
    128     }
    129   }
    130 
    131   /* Initialize bitread state variables */
    132   entropy->bitstate.bits_left = 0;
    133   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
    134   entropy->pub.insufficient_data = FALSE;
    135 
    136   /* Initialize restart counter */
    137   entropy->restarts_to_go = cinfo->restart_interval;
    138 }
    139 
    140 
    141 /*
    142  * Compute the derived values for a Huffman table.
    143  * This routine also performs some validation checks on the table.
    144  *
    145  * Note this is also used by jdphuff.c.
    146  */
    147 
    148 GLOBAL(void)
    149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
    150 			 d_derived_tbl ** pdtbl)
    151 {
    152   JHUFF_TBL *htbl;
    153   d_derived_tbl *dtbl;
    154   int p, i, l, si, numsymbols;
    155   int lookbits, ctr;
    156   char huffsize[257];
    157   unsigned int huffcode[257];
    158   unsigned int code;
    159 
    160   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    161    * paralleling the order of the symbols themselves in htbl->huffval[].
    162    */
    163 
    164   /* Find the input Huffman table */
    165   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    166     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    167   htbl =
    168     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    169   if (htbl == NULL)
    170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    171 
    172   /* Allocate a workspace if we haven't already done so. */
    173   if (*pdtbl == NULL)
    174     *pdtbl = (d_derived_tbl *)
    175       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    176 				  SIZEOF(d_derived_tbl));
    177   dtbl = *pdtbl;
    178   dtbl->pub = htbl;		/* fill in back link */
    179   
    180   /* Figure C.1: make table of Huffman code length for each symbol */
    181 
    182   p = 0;
    183   for (l = 1; l <= 16; l++) {
    184     i = (int) htbl->bits[l];
    185     if (i < 0 || p + i > 256)	/* protect against table overrun */
    186       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    187     while (i--)
    188       huffsize[p++] = (char) l;
    189   }
    190   huffsize[p] = 0;
    191   numsymbols = p;
    192   
    193   /* Figure C.2: generate the codes themselves */
    194   /* We also validate that the counts represent a legal Huffman code tree. */
    195   
    196   code = 0;
    197   si = huffsize[0];
    198   p = 0;
    199   while (huffsize[p]) {
    200     while (((int) huffsize[p]) == si) {
    201       huffcode[p++] = code;
    202       code++;
    203     }
    204     /* code is now 1 more than the last code used for codelength si; but
    205      * it must still fit in si bits, since no code is allowed to be all ones.
    206      */
    207     if (((INT32) code) >= (((INT32) 1) << si))
    208       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    209     code <<= 1;
    210     si++;
    211   }
    212 
    213   /* Figure F.15: generate decoding tables for bit-sequential decoding */
    214 
    215   p = 0;
    216   for (l = 1; l <= 16; l++) {
    217     if (htbl->bits[l]) {
    218       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
    219        * minus the minimum code of length l
    220        */
    221       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
    222       p += htbl->bits[l];
    223       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    224     } else {
    225       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    226     }
    227   }
    228   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
    229 
    230   /* Compute lookahead tables to speed up decoding.
    231    * First we set all the table entries to 0, indicating "too long";
    232    * then we iterate through the Huffman codes that are short enough and
    233    * fill in all the entries that correspond to bit sequences starting
    234    * with that code.
    235    */
    236 
    237   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
    238 
    239   p = 0;
    240   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    241     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
    242       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
    243       /* Generate left-justified code followed by all possible bit sequences */
    244       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
    245       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
    246 	dtbl->look_nbits[lookbits] = l;
    247 	dtbl->look_sym[lookbits] = htbl->huffval[p];
    248 	lookbits++;
    249       }
    250     }
    251   }
    252 
    253   /* Validate symbols as being reasonable.
    254    * For AC tables, we make no check, but accept all byte values 0..255.
    255    * For DC tables, we require the symbols to be in range 0..15.
    256    * (Tighter bounds could be applied depending on the data depth and mode,
    257    * but this is sufficient to ensure safe decoding.)
    258    */
    259   if (isDC) {
    260     for (i = 0; i < numsymbols; i++) {
    261       int sym = htbl->huffval[i];
    262       if (sym < 0 || sym > 15)
    263 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    264     }
    265   }
    266 }
    267 
    268 
    269 /*
    270  * Out-of-line code for bit fetching (shared with jdphuff.c).
    271  * See jdhuff.h for info about usage.
    272  * Note: current values of get_buffer and bits_left are passed as parameters,
    273  * but are returned in the corresponding fields of the state struct.
    274  *
    275  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
    276  * of get_buffer to be used.  (On machines with wider words, an even larger
    277  * buffer could be used.)  However, on some machines 32-bit shifts are
    278  * quite slow and take time proportional to the number of places shifted.
    279  * (This is true with most PC compilers, for instance.)  In this case it may
    280  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
    281  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
    282  */
    283 
    284 #ifdef SLOW_SHIFT_32
    285 #define MIN_GET_BITS  15	/* minimum allowable value */
    286 #else
    287 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
    288 #endif
    289 
    290 
    291 GLOBAL(boolean)
    292 jpeg_fill_bit_buffer (bitread_working_state * state,
    293 		      register bit_buf_type get_buffer, register int bits_left,
    294 		      int nbits)
    295 /* Load up the bit buffer to a depth of at least nbits */
    296 {
    297   /* Copy heavily used state fields into locals (hopefully registers) */
    298   register const JOCTET * next_input_byte = state->next_input_byte;
    299   register size_t bytes_in_buffer = state->bytes_in_buffer;
    300   j_decompress_ptr cinfo = state->cinfo;
    301 
    302   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
    303   /* (It is assumed that no request will be for more than that many bits.) */
    304   /* We fail to do so only if we hit a marker or are forced to suspend. */
    305 
    306   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
    307     while (bits_left < MIN_GET_BITS) {
    308       register int c;
    309 
    310       /* Attempt to read a byte */
    311       if (bytes_in_buffer == 0) {
    312 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
    313 	  return FALSE;
    314 	next_input_byte = cinfo->src->next_input_byte;
    315 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
    316       }
    317       bytes_in_buffer--;
    318       c = GETJOCTET(*next_input_byte++);
    319 
    320       /* If it's 0xFF, check and discard stuffed zero byte */
    321       if (c == 0xFF) {
    322 	/* Loop here to discard any padding FF's on terminating marker,
    323 	 * so that we can save a valid unread_marker value.  NOTE: we will
    324 	 * accept multiple FF's followed by a 0 as meaning a single FF data
    325 	 * byte.  This data pattern is not valid according to the standard.
    326 	 */
    327 	do {
    328 	  if (bytes_in_buffer == 0) {
    329 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
    330 	      return FALSE;
    331 	    next_input_byte = cinfo->src->next_input_byte;
    332 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
    333 	  }
    334 	  bytes_in_buffer--;
    335 	  c = GETJOCTET(*next_input_byte++);
    336 	} while (c == 0xFF);
    337 
    338 	if (c == 0) {
    339 	  /* Found FF/00, which represents an FF data byte */
    340 	  c = 0xFF;
    341 	} else {
    342 	  /* Oops, it's actually a marker indicating end of compressed data.
    343 	   * Save the marker code for later use.
    344 	   * Fine point: it might appear that we should save the marker into
    345 	   * bitread working state, not straight into permanent state.  But
    346 	   * once we have hit a marker, we cannot need to suspend within the
    347 	   * current MCU, because we will read no more bytes from the data
    348 	   * source.  So it is OK to update permanent state right away.
    349 	   */
    350 	  cinfo->unread_marker = c;
    351 	  /* See if we need to insert some fake zero bits. */
    352 	  goto no_more_bytes;
    353 	}
    354       }
    355 
    356       /* OK, load c into get_buffer */
    357       get_buffer = (get_buffer << 8) | c;
    358       bits_left += 8;
    359     } /* end while */
    360   } else {
    361   no_more_bytes:
    362     /* We get here if we've read the marker that terminates the compressed
    363      * data segment.  There should be enough bits in the buffer register
    364      * to satisfy the request; if so, no problem.
    365      */
    366     if (nbits > bits_left) {
    367       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
    368        * the data stream, so that we can produce some kind of image.
    369        * We use a nonvolatile flag to ensure that only one warning message
    370        * appears per data segment.
    371        */
    372       if (! cinfo->entropy->insufficient_data) {
    373 	WARNMS(cinfo, JWRN_HIT_MARKER);
    374 	cinfo->entropy->insufficient_data = TRUE;
    375       }
    376       /* Fill the buffer with zero bits */
    377       get_buffer <<= MIN_GET_BITS - bits_left;
    378       bits_left = MIN_GET_BITS;
    379     }
    380   }
    381 
    382   /* Unload the local registers */
    383   state->next_input_byte = next_input_byte;
    384   state->bytes_in_buffer = bytes_in_buffer;
    385   state->get_buffer = get_buffer;
    386   state->bits_left = bits_left;
    387 
    388   return TRUE;
    389 }
    390 
    391 
    392 /*
    393  * Out-of-line code for Huffman code decoding.
    394  * See jdhuff.h for info about usage.
    395  */
    396 
    397 GLOBAL(int)
    398 jpeg_huff_decode (bitread_working_state * state,
    399 		  register bit_buf_type get_buffer, register int bits_left,
    400 		  d_derived_tbl * htbl, int min_bits)
    401 {
    402   register int l = min_bits;
    403   register INT32 code;
    404 
    405   /* HUFF_DECODE has determined that the code is at least min_bits */
    406   /* bits long, so fetch that many bits in one swoop. */
    407 
    408   CHECK_BIT_BUFFER(*state, l, return -1);
    409   code = GET_BITS(l);
    410 
    411   /* Collect the rest of the Huffman code one bit at a time. */
    412   /* This is per Figure F.16 in the JPEG spec. */
    413 
    414   while (code > htbl->maxcode[l]) {
    415     code <<= 1;
    416     CHECK_BIT_BUFFER(*state, 1, return -1);
    417     code |= GET_BITS(1);
    418     l++;
    419   }
    420 
    421   /* Unload the local registers */
    422   state->get_buffer = get_buffer;
    423   state->bits_left = bits_left;
    424 
    425   /* With garbage input we may reach the sentinel value l = 17. */
    426 
    427   if (l > 16) {
    428     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
    429     return 0;			/* fake a zero as the safest result */
    430   }
    431 
    432   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
    433 }
    434 
    435 
    436 /*
    437  * Figure F.12: extend sign bit.
    438  * On some machines, a shift and add will be faster than a table lookup.
    439  */
    440 
    441 #ifdef AVOID_TABLES
    442 
    443 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
    444 
    445 #else
    446 
    447 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
    448 
    449 static const int extend_test[16] =   /* entry n is 2**(n-1) */
    450   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    451     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
    452 
    453 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
    454   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    455     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    456     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    457     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
    458 
    459 #endif /* AVOID_TABLES */
    460 
    461 
    462 /*
    463  * Check for a restart marker & resynchronize decoder.
    464  * Returns FALSE if must suspend.
    465  */
    466 
    467 LOCAL(boolean)
    468 process_restart (j_decompress_ptr cinfo)
    469 {
    470   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    471   int ci;
    472 
    473   /* Throw away any unused bits remaining in bit buffer; */
    474   /* include any full bytes in next_marker's count of discarded bytes */
    475   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
    476   entropy->bitstate.bits_left = 0;
    477 
    478   /* Advance past the RSTn marker */
    479   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    480     return FALSE;
    481 
    482   /* Re-initialize DC predictions to 0 */
    483   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    484     entropy->saved.last_dc_val[ci] = 0;
    485 
    486   /* Reset restart counter */
    487   entropy->restarts_to_go = cinfo->restart_interval;
    488 
    489   /* Reset out-of-data flag, unless read_restart_marker left us smack up
    490    * against a marker.  In that case we will end up treating the next data
    491    * segment as empty, and we can avoid producing bogus output pixels by
    492    * leaving the flag set.
    493    */
    494   if (cinfo->unread_marker == 0)
    495     entropy->pub.insufficient_data = FALSE;
    496 
    497   return TRUE;
    498 }
    499 
    500 
    501 /*
    502  * Decode and return one MCU's worth of Huffman-compressed coefficients.
    503  * The coefficients are reordered from zigzag order into natural array order,
    504  * but are not dequantized.
    505  *
    506  * The i'th block of the MCU is stored into the block pointed to by
    507  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
    508  * (Wholesale zeroing is usually a little faster than retail...)
    509  *
    510  * Returns FALSE if data source requested suspension.  In that case no
    511  * changes have been made to permanent state.  (Exception: some output
    512  * coefficients may already have been assigned.  This is harmless for
    513  * this module, since we'll just re-assign them on the next call.)
    514  */
    515 
    516 METHODDEF(boolean)
    517 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    518 {
    519   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    520   int blkn;
    521   BITREAD_STATE_VARS;
    522   savable_state state;
    523 
    524   /* Process restart marker if needed; may have to suspend */
    525   if (cinfo->restart_interval) {
    526     if (entropy->restarts_to_go == 0)
    527       if (! process_restart(cinfo))
    528 	return FALSE;
    529   }
    530 
    531   /* If we've run out of data, just leave the MCU set to zeroes.
    532    * This way, we return uniform gray for the remainder of the segment.
    533    */
    534   if (! entropy->pub.insufficient_data) {
    535 
    536     /* Load up working state */
    537     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    538     ASSIGN_STATE(state, entropy->saved);
    539 
    540     /* Outer loop handles each block in the MCU */
    541 
    542     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    543       JBLOCKROW block = MCU_data[blkn];
    544       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
    545       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
    546       register int s, k, r;
    547 
    548       /* Decode a single block's worth of coefficients */
    549 
    550       /* Section F.2.2.1: decode the DC coefficient difference */
    551       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
    552       if (s) {
    553 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
    554 	r = GET_BITS(s);
    555 	s = HUFF_EXTEND(r, s);
    556       }
    557 
    558       if (entropy->dc_needed[blkn]) {
    559 	/* Convert DC difference to actual value, update last_dc_val */
    560 	int ci = cinfo->MCU_membership[blkn];
    561 	s += state.last_dc_val[ci];
    562 	state.last_dc_val[ci] = s;
    563 	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
    564 	(*block)[0] = (JCOEF) s;
    565       }
    566 
    567       if (entropy->ac_needed[blkn]) {
    568 
    569 	/* Section F.2.2.2: decode the AC coefficients */
    570 	/* Since zeroes are skipped, output area must be cleared beforehand */
    571 	for (k = 1; k < DCTSIZE2; k++) {
    572 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
    573       
    574 	  r = s >> 4;
    575 	  s &= 15;
    576       
    577 	  if (s) {
    578 	    k += r;
    579 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
    580 	    r = GET_BITS(s);
    581 	    s = HUFF_EXTEND(r, s);
    582 	    /* Output coefficient in natural (dezigzagged) order.
    583 	     * Note: the extra entries in jpeg_natural_order[] will save us
    584 	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
    585 	     */
    586 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
    587 	  } else {
    588 	    if (r != 15)
    589 	      break;
    590 	    k += 15;
    591 	  }
    592 	}
    593 
    594       } else {
    595 
    596 	/* Section F.2.2.2: decode the AC coefficients */
    597 	/* In this path we just discard the values */
    598 	for (k = 1; k < DCTSIZE2; k++) {
    599 	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
    600       
    601 	  r = s >> 4;
    602 	  s &= 15;
    603       
    604 	  if (s) {
    605 	    k += r;
    606 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
    607 	    DROP_BITS(s);
    608 	  } else {
    609 	    if (r != 15)
    610 	      break;
    611 	    k += 15;
    612 	  }
    613 	}
    614 
    615       }
    616     }
    617 
    618     /* Completed MCU, so update state */
    619     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    620     ASSIGN_STATE(entropy->saved, state);
    621   }
    622 
    623   /* Account for restart interval (no-op if not using restarts) */
    624   entropy->restarts_to_go--;
    625 
    626   return TRUE;
    627 }
    628 
    629 
    630 /*
    631  * Module initialization routine for Huffman entropy decoding.
    632  */
    633 
    634 GLOBAL(void)
    635 jinit_huff_decoder (j_decompress_ptr cinfo)
    636 {
    637   huff_entropy_ptr entropy;
    638   int i;
    639 
    640   entropy = (huff_entropy_ptr)
    641     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    642 				SIZEOF(huff_entropy_decoder));
    643   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    644   entropy->pub.start_pass = start_pass_huff_decoder;
    645   entropy->pub.decode_mcu = decode_mcu;
    646 
    647   /* Mark tables unallocated */
    648   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    649     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    650   }
    651 }