vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

jidctfst.c (13170B)


      1 /*
      2  * jidctfst.c
      3  *
      4  * Copyright (C) 1994-1998, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains a fast, not so accurate integer implementation of the
      9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     10  * must also perform dequantization of the input coefficients.
     11  *
     12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     13  * on each row (or vice versa, but it's more convenient to emit a row at
     14  * a time).  Direct algorithms are also available, but they are much more
     15  * complex and seem not to be any faster when reduced to code.
     16  *
     17  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     18  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     19  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     20  * JPEG textbook (see REFERENCES section in file README).  The following code
     21  * is based directly on figure 4-8 in P&M.
     22  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     23  * possible to arrange the computation so that many of the multiplies are
     24  * simple scalings of the final outputs.  These multiplies can then be
     25  * folded into the multiplications or divisions by the JPEG quantization
     26  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     27  * to be done in the DCT itself.
     28  * The primary disadvantage of this method is that with fixed-point math,
     29  * accuracy is lost due to imprecise representation of the scaled
     30  * quantization values.  The smaller the quantization table entry, the less
     31  * precise the scaled value, so this implementation does worse with high-
     32  * quality-setting files than with low-quality ones.
     33  */
     34 
     35 #define JPEG_INTERNALS
     36 #include "jinclude.h"
     37 #include "jpeglib.h"
     38 #include "jdct.h"		/* Private declarations for DCT subsystem */
     39 
     40 #ifdef DCT_IFAST_SUPPORTED
     41 
     42 
     43 /*
     44  * This module is specialized to the case DCTSIZE = 8.
     45  */
     46 
     47 #if DCTSIZE != 8
     48   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     49 #endif
     50 
     51 
     52 /* Scaling decisions are generally the same as in the LL&M algorithm;
     53  * see jidctint.c for more details.  However, we choose to descale
     54  * (right shift) multiplication products as soon as they are formed,
     55  * rather than carrying additional fractional bits into subsequent additions.
     56  * This compromises accuracy slightly, but it lets us save a few shifts.
     57  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
     58  * everywhere except in the multiplications proper; this saves a good deal
     59  * of work on 16-bit-int machines.
     60  *
     61  * The dequantized coefficients are not integers because the AA&N scaling
     62  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
     63  * so that the first and second IDCT rounds have the same input scaling.
     64  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
     65  * avoid a descaling shift; this compromises accuracy rather drastically
     66  * for small quantization table entries, but it saves a lot of shifts.
     67  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
     68  * so we use a much larger scaling factor to preserve accuracy.
     69  *
     70  * A final compromise is to represent the multiplicative constants to only
     71  * 8 fractional bits, rather than 13.  This saves some shifting work on some
     72  * machines, and may also reduce the cost of multiplication (since there
     73  * are fewer one-bits in the constants).
     74  */
     75 
     76 #if BITS_IN_JSAMPLE == 8
     77 #define CONST_BITS  8
     78 #define PASS1_BITS  2
     79 #else
     80 #define CONST_BITS  8
     81 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
     82 #endif
     83 
     84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     85  * causing a lot of useless floating-point operations at run time.
     86  * To get around this we use the following pre-calculated constants.
     87  * If you change CONST_BITS you may want to add appropriate values.
     88  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     89  */
     90 
     91 #if CONST_BITS == 8
     92 #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
     93 #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
     94 #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
     95 #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
     96 #else
     97 #define FIX_1_082392200  FIX(1.082392200)
     98 #define FIX_1_414213562  FIX(1.414213562)
     99 #define FIX_1_847759065  FIX(1.847759065)
    100 #define FIX_2_613125930  FIX(2.613125930)
    101 #endif
    102 
    103 
    104 /* We can gain a little more speed, with a further compromise in accuracy,
    105  * by omitting the addition in a descaling shift.  This yields an incorrectly
    106  * rounded result half the time...
    107  */
    108 
    109 #ifndef USE_ACCURATE_ROUNDING
    110 #undef DESCALE
    111 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
    112 #endif
    113 
    114 
    115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
    116  * descale to yield a DCTELEM result.
    117  */
    118 
    119 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
    120 
    121 
    122 /* Dequantize a coefficient by multiplying it by the multiplier-table
    123  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
    124  * multiplication will do.  For 12-bit data, the multiplier table is
    125  * declared INT32, so a 32-bit multiply will be used.
    126  */
    127 
    128 #if BITS_IN_JSAMPLE == 8
    129 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
    130 #else
    131 #define DEQUANTIZE(coef,quantval)  \
    132 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
    133 #endif
    134 
    135 
    136 /* Like DESCALE, but applies to a DCTELEM and produces an int.
    137  * We assume that int right shift is unsigned if INT32 right shift is.
    138  */
    139 
    140 #ifdef RIGHT_SHIFT_IS_UNSIGNED
    141 #define ISHIFT_TEMPS	DCTELEM ishift_temp;
    142 #if BITS_IN_JSAMPLE == 8
    143 #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
    144 #else
    145 #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
    146 #endif
    147 #define IRIGHT_SHIFT(x,shft)  \
    148     ((ishift_temp = (x)) < 0 ? \
    149      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
    150      (ishift_temp >> (shft)))
    151 #else
    152 #define ISHIFT_TEMPS
    153 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
    154 #endif
    155 
    156 #ifdef USE_ACCURATE_ROUNDING
    157 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
    158 #else
    159 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
    160 #endif
    161 
    162 
    163 /*
    164  * Perform dequantization and inverse DCT on one block of coefficients.
    165  */
    166 
    167 GLOBAL(void)
    168 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
    169 		 JCOEFPTR coef_block,
    170 		 JSAMPARRAY output_buf, JDIMENSION output_col)
    171 {
    172   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    173   DCTELEM tmp10, tmp11, tmp12, tmp13;
    174   DCTELEM z5, z10, z11, z12, z13;
    175   JCOEFPTR inptr;
    176   IFAST_MULT_TYPE * quantptr;
    177   int * wsptr;
    178   JSAMPROW outptr;
    179   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    180   int ctr;
    181   int workspace[DCTSIZE2];	/* buffers data between passes */
    182   SHIFT_TEMPS			/* for DESCALE */
    183   ISHIFT_TEMPS			/* for IDESCALE */
    184 
    185   /* Pass 1: process columns from input, store into work array. */
    186 
    187   inptr = coef_block;
    188   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
    189   wsptr = workspace;
    190   for (ctr = DCTSIZE; ctr > 0; ctr--) {
    191     /* Due to quantization, we will usually find that many of the input
    192      * coefficients are zero, especially the AC terms.  We can exploit this
    193      * by short-circuiting the IDCT calculation for any column in which all
    194      * the AC terms are zero.  In that case each output is equal to the
    195      * DC coefficient (with scale factor as needed).
    196      * With typical images and quantization tables, half or more of the
    197      * column DCT calculations can be simplified this way.
    198      */
    199     
    200     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    201 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    202 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    203 	inptr[DCTSIZE*7] == 0) {
    204       /* AC terms all zero */
    205       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    206 
    207       wsptr[DCTSIZE*0] = dcval;
    208       wsptr[DCTSIZE*1] = dcval;
    209       wsptr[DCTSIZE*2] = dcval;
    210       wsptr[DCTSIZE*3] = dcval;
    211       wsptr[DCTSIZE*4] = dcval;
    212       wsptr[DCTSIZE*5] = dcval;
    213       wsptr[DCTSIZE*6] = dcval;
    214       wsptr[DCTSIZE*7] = dcval;
    215       
    216       inptr++;			/* advance pointers to next column */
    217       quantptr++;
    218       wsptr++;
    219       continue;
    220     }
    221     
    222     /* Even part */
    223 
    224     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    225     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    226     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    227     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    228 
    229     tmp10 = tmp0 + tmp2;	/* phase 3 */
    230     tmp11 = tmp0 - tmp2;
    231 
    232     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    233     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
    234 
    235     tmp0 = tmp10 + tmp13;	/* phase 2 */
    236     tmp3 = tmp10 - tmp13;
    237     tmp1 = tmp11 + tmp12;
    238     tmp2 = tmp11 - tmp12;
    239     
    240     /* Odd part */
    241 
    242     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    243     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    244     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    245     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    246 
    247     z13 = tmp6 + tmp5;		/* phase 6 */
    248     z10 = tmp6 - tmp5;
    249     z11 = tmp4 + tmp7;
    250     z12 = tmp4 - tmp7;
    251 
    252     tmp7 = z11 + z13;		/* phase 5 */
    253     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
    254 
    255     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    256     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    257     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
    258 
    259     tmp6 = tmp12 - tmp7;	/* phase 2 */
    260     tmp5 = tmp11 - tmp6;
    261     tmp4 = tmp10 + tmp5;
    262 
    263     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
    264     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
    265     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
    266     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
    267     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
    268     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
    269     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
    270     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
    271 
    272     inptr++;			/* advance pointers to next column */
    273     quantptr++;
    274     wsptr++;
    275   }
    276   
    277   /* Pass 2: process rows from work array, store into output array. */
    278   /* Note that we must descale the results by a factor of 8 == 2**3, */
    279   /* and also undo the PASS1_BITS scaling. */
    280 
    281   wsptr = workspace;
    282   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    283     outptr = output_buf[ctr] + output_col;
    284     /* Rows of zeroes can be exploited in the same way as we did with columns.
    285      * However, the column calculation has created many nonzero AC terms, so
    286      * the simplification applies less often (typically 5% to 10% of the time).
    287      * On machines with very fast multiplication, it's possible that the
    288      * test takes more time than it's worth.  In that case this section
    289      * may be commented out.
    290      */
    291     
    292 #ifndef NO_ZERO_ROW_TEST
    293     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
    294 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    295       /* AC terms all zero */
    296       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
    297 				  & RANGE_MASK];
    298       
    299       outptr[0] = dcval;
    300       outptr[1] = dcval;
    301       outptr[2] = dcval;
    302       outptr[3] = dcval;
    303       outptr[4] = dcval;
    304       outptr[5] = dcval;
    305       outptr[6] = dcval;
    306       outptr[7] = dcval;
    307 
    308       wsptr += DCTSIZE;		/* advance pointer to next row */
    309       continue;
    310     }
    311 #endif
    312     
    313     /* Even part */
    314 
    315     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
    316     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
    317 
    318     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
    319     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
    320 	    - tmp13;
    321 
    322     tmp0 = tmp10 + tmp13;
    323     tmp3 = tmp10 - tmp13;
    324     tmp1 = tmp11 + tmp12;
    325     tmp2 = tmp11 - tmp12;
    326 
    327     /* Odd part */
    328 
    329     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
    330     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
    331     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
    332     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
    333 
    334     tmp7 = z11 + z13;		/* phase 5 */
    335     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
    336 
    337     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
    338     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
    339     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
    340 
    341     tmp6 = tmp12 - tmp7;	/* phase 2 */
    342     tmp5 = tmp11 - tmp6;
    343     tmp4 = tmp10 + tmp5;
    344 
    345     /* Final output stage: scale down by a factor of 8 and range-limit */
    346 
    347     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
    348 			    & RANGE_MASK];
    349     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
    350 			    & RANGE_MASK];
    351     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
    352 			    & RANGE_MASK];
    353     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
    354 			    & RANGE_MASK];
    355     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
    356 			    & RANGE_MASK];
    357     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
    358 			    & RANGE_MASK];
    359     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
    360 			    & RANGE_MASK];
    361     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
    362 			    & RANGE_MASK];
    363 
    364     wsptr += DCTSIZE;		/* advance pointer to next row */
    365   }
    366 }
    367 
    368 #endif /* DCT_IFAST_SUPPORTED */