vx32

Local 9vx git repository for patches.
git clone git://r-36.net/vx32
Log | Files | Refs

jquant2.c (48429B)


      1 /*
      2  * jquant2.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains 2-pass color quantization (color mapping) routines.
      9  * These routines provide selection of a custom color map for an image,
     10  * followed by mapping of the image to that color map, with optional
     11  * Floyd-Steinberg dithering.
     12  * It is also possible to use just the second pass to map to an arbitrary
     13  * externally-given color map.
     14  *
     15  * Note: ordered dithering is not supported, since there isn't any fast
     16  * way to compute intercolor distances; it's unclear that ordered dither's
     17  * fundamental assumptions even hold with an irregularly spaced color map.
     18  */
     19 
     20 #define JPEG_INTERNALS
     21 #include "jinclude.h"
     22 #include "jpeglib.h"
     23 
     24 #ifdef QUANT_2PASS_SUPPORTED
     25 
     26 
     27 /*
     28  * This module implements the well-known Heckbert paradigm for color
     29  * quantization.  Most of the ideas used here can be traced back to
     30  * Heckbert's seminal paper
     31  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
     32  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
     33  *
     34  * In the first pass over the image, we accumulate a histogram showing the
     35  * usage count of each possible color.  To keep the histogram to a reasonable
     36  * size, we reduce the precision of the input; typical practice is to retain
     37  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
     38  * in the same histogram cell.
     39  *
     40  * Next, the color-selection step begins with a box representing the whole
     41  * color space, and repeatedly splits the "largest" remaining box until we
     42  * have as many boxes as desired colors.  Then the mean color in each
     43  * remaining box becomes one of the possible output colors.
     44  * 
     45  * The second pass over the image maps each input pixel to the closest output
     46  * color (optionally after applying a Floyd-Steinberg dithering correction).
     47  * This mapping is logically trivial, but making it go fast enough requires
     48  * considerable care.
     49  *
     50  * Heckbert-style quantizers vary a good deal in their policies for choosing
     51  * the "largest" box and deciding where to cut it.  The particular policies
     52  * used here have proved out well in experimental comparisons, but better ones
     53  * may yet be found.
     54  *
     55  * In earlier versions of the IJG code, this module quantized in YCbCr color
     56  * space, processing the raw upsampled data without a color conversion step.
     57  * This allowed the color conversion math to be done only once per colormap
     58  * entry, not once per pixel.  However, that optimization precluded other
     59  * useful optimizations (such as merging color conversion with upsampling)
     60  * and it also interfered with desired capabilities such as quantizing to an
     61  * externally-supplied colormap.  We have therefore abandoned that approach.
     62  * The present code works in the post-conversion color space, typically RGB.
     63  *
     64  * To improve the visual quality of the results, we actually work in scaled
     65  * RGB space, giving G distances more weight than R, and R in turn more than
     66  * B.  To do everything in integer math, we must use integer scale factors.
     67  * The 2/3/1 scale factors used here correspond loosely to the relative
     68  * weights of the colors in the NTSC grayscale equation.
     69  * If you want to use this code to quantize a non-RGB color space, you'll
     70  * probably need to change these scale factors.
     71  */
     72 
     73 #define R_SCALE 2		/* scale R distances by this much */
     74 #define G_SCALE 3		/* scale G distances by this much */
     75 #define B_SCALE 1		/* and B by this much */
     76 
     77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
     78  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
     79  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
     80  * you'll get compile errors until you extend this logic.  In that case
     81  * you'll probably want to tweak the histogram sizes too.
     82  */
     83 
     84 #if RGB_RED == 0
     85 #define C0_SCALE R_SCALE
     86 #endif
     87 #if RGB_BLUE == 0
     88 #define C0_SCALE B_SCALE
     89 #endif
     90 #if RGB_GREEN == 1
     91 #define C1_SCALE G_SCALE
     92 #endif
     93 #if RGB_RED == 2
     94 #define C2_SCALE R_SCALE
     95 #endif
     96 #if RGB_BLUE == 2
     97 #define C2_SCALE B_SCALE
     98 #endif
     99 
    100 
    101 /*
    102  * First we have the histogram data structure and routines for creating it.
    103  *
    104  * The number of bits of precision can be adjusted by changing these symbols.
    105  * We recommend keeping 6 bits for G and 5 each for R and B.
    106  * If you have plenty of memory and cycles, 6 bits all around gives marginally
    107  * better results; if you are short of memory, 5 bits all around will save
    108  * some space but degrade the results.
    109  * To maintain a fully accurate histogram, we'd need to allocate a "long"
    110  * (preferably unsigned long) for each cell.  In practice this is overkill;
    111  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
    112  * and clamping those that do overflow to the maximum value will give close-
    113  * enough results.  This reduces the recommended histogram size from 256Kb
    114  * to 128Kb, which is a useful savings on PC-class machines.
    115  * (In the second pass the histogram space is re-used for pixel mapping data;
    116  * in that capacity, each cell must be able to store zero to the number of
    117  * desired colors.  16 bits/cell is plenty for that too.)
    118  * Since the JPEG code is intended to run in small memory model on 80x86
    119  * machines, we can't just allocate the histogram in one chunk.  Instead
    120  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
    121  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
    122  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
    123  * on 80x86 machines, the pointer row is in near memory but the actual
    124  * arrays are in far memory (same arrangement as we use for image arrays).
    125  */
    126 
    127 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
    128 
    129 /* These will do the right thing for either R,G,B or B,G,R color order,
    130  * but you may not like the results for other color orders.
    131  */
    132 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
    133 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
    134 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
    135 
    136 /* Number of elements along histogram axes. */
    137 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
    138 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
    139 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
    140 
    141 /* These are the amounts to shift an input value to get a histogram index. */
    142 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
    143 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
    144 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
    145 
    146 
    147 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
    148 
    149 typedef histcell FAR * histptr;	/* for pointers to histogram cells */
    150 
    151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
    152 typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
    153 typedef hist2d * hist3d;	/* type for top-level pointer */
    154 
    155 
    156 /* Declarations for Floyd-Steinberg dithering.
    157  *
    158  * Errors are accumulated into the array fserrors[], at a resolution of
    159  * 1/16th of a pixel count.  The error at a given pixel is propagated
    160  * to its not-yet-processed neighbors using the standard F-S fractions,
    161  *		...	(here)	7/16
    162  *		3/16	5/16	1/16
    163  * We work left-to-right on even rows, right-to-left on odd rows.
    164  *
    165  * We can get away with a single array (holding one row's worth of errors)
    166  * by using it to store the current row's errors at pixel columns not yet
    167  * processed, but the next row's errors at columns already processed.  We
    168  * need only a few extra variables to hold the errors immediately around the
    169  * current column.  (If we are lucky, those variables are in registers, but
    170  * even if not, they're probably cheaper to access than array elements are.)
    171  *
    172  * The fserrors[] array has (#columns + 2) entries; the extra entry at
    173  * each end saves us from special-casing the first and last pixels.
    174  * Each entry is three values long, one value for each color component.
    175  *
    176  * Note: on a wide image, we might not have enough room in a PC's near data
    177  * segment to hold the error array; so it is allocated with alloc_large.
    178  */
    179 
    180 #if BITS_IN_JSAMPLE == 8
    181 typedef INT16 FSERROR;		/* 16 bits should be enough */
    182 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
    183 #else
    184 typedef INT32 FSERROR;		/* may need more than 16 bits */
    185 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
    186 #endif
    187 
    188 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
    189 
    190 
    191 /* Private subobject */
    192 
    193 typedef struct {
    194   struct jpeg_color_quantizer pub; /* public fields */
    195 
    196   /* Space for the eventually created colormap is stashed here */
    197   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
    198   int desired;			/* desired # of colors = size of colormap */
    199 
    200   /* Variables for accumulating image statistics */
    201   hist3d histogram;		/* pointer to the histogram */
    202 
    203   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
    204 
    205   /* Variables for Floyd-Steinberg dithering */
    206   FSERRPTR fserrors;		/* accumulated errors */
    207   boolean on_odd_row;		/* flag to remember which row we are on */
    208   int * error_limiter;		/* table for clamping the applied error */
    209 } my_cquantizer;
    210 
    211 typedef my_cquantizer * my_cquantize_ptr;
    212 
    213 
    214 /*
    215  * Prescan some rows of pixels.
    216  * In this module the prescan simply updates the histogram, which has been
    217  * initialized to zeroes by start_pass.
    218  * An output_buf parameter is required by the method signature, but no data
    219  * is actually output (in fact the buffer controller is probably passing a
    220  * NULL pointer).
    221  */
    222 
    223 METHODDEF(void)
    224 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    225 		  JSAMPARRAY output_buf, int num_rows)
    226 {
    227   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    228   register JSAMPROW ptr;
    229   register histptr histp;
    230   register hist3d histogram = cquantize->histogram;
    231   int row;
    232   JDIMENSION col;
    233   JDIMENSION width = cinfo->output_width;
    234 
    235   for (row = 0; row < num_rows; row++) {
    236     ptr = input_buf[row];
    237     for (col = width; col > 0; col--) {
    238       /* get pixel value and index into the histogram */
    239       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
    240 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
    241 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
    242       /* increment, check for overflow and undo increment if so. */
    243       if (++(*histp) <= 0)
    244 	(*histp)--;
    245       ptr += 3;
    246     }
    247   }
    248 }
    249 
    250 
    251 /*
    252  * Next we have the really interesting routines: selection of a colormap
    253  * given the completed histogram.
    254  * These routines work with a list of "boxes", each representing a rectangular
    255  * subset of the input color space (to histogram precision).
    256  */
    257 
    258 typedef struct {
    259   /* The bounds of the box (inclusive); expressed as histogram indexes */
    260   int c0min, c0max;
    261   int c1min, c1max;
    262   int c2min, c2max;
    263   /* The volume (actually 2-norm) of the box */
    264   INT32 volume;
    265   /* The number of nonzero histogram cells within this box */
    266   long colorcount;
    267 } box;
    268 
    269 typedef box * boxptr;
    270 
    271 
    272 LOCAL(boxptr)
    273 find_biggest_color_pop (boxptr boxlist, int numboxes)
    274 /* Find the splittable box with the largest color population */
    275 /* Returns NULL if no splittable boxes remain */
    276 {
    277   register boxptr boxp;
    278   register int i;
    279   register long maxc = 0;
    280   boxptr which = NULL;
    281   
    282   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    283     if (boxp->colorcount > maxc && boxp->volume > 0) {
    284       which = boxp;
    285       maxc = boxp->colorcount;
    286     }
    287   }
    288   return which;
    289 }
    290 
    291 
    292 LOCAL(boxptr)
    293 find_biggest_volume (boxptr boxlist, int numboxes)
    294 /* Find the splittable box with the largest (scaled) volume */
    295 /* Returns NULL if no splittable boxes remain */
    296 {
    297   register boxptr boxp;
    298   register int i;
    299   register INT32 maxv = 0;
    300   boxptr which = NULL;
    301   
    302   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    303     if (boxp->volume > maxv) {
    304       which = boxp;
    305       maxv = boxp->volume;
    306     }
    307   }
    308   return which;
    309 }
    310 
    311 
    312 LOCAL(void)
    313 update_box (j_decompress_ptr cinfo, boxptr boxp)
    314 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
    315 /* and recompute its volume and population */
    316 {
    317   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    318   hist3d histogram = cquantize->histogram;
    319   histptr histp;
    320   int c0,c1,c2;
    321   int c0min,c0max,c1min,c1max,c2min,c2max;
    322   INT32 dist0,dist1,dist2;
    323   long ccount;
    324   
    325   c0min = boxp->c0min;  c0max = boxp->c0max;
    326   c1min = boxp->c1min;  c1max = boxp->c1max;
    327   c2min = boxp->c2min;  c2max = boxp->c2max;
    328   
    329   if (c0max > c0min)
    330     for (c0 = c0min; c0 <= c0max; c0++)
    331       for (c1 = c1min; c1 <= c1max; c1++) {
    332 	histp = & histogram[c0][c1][c2min];
    333 	for (c2 = c2min; c2 <= c2max; c2++)
    334 	  if (*histp++ != 0) {
    335 	    boxp->c0min = c0min = c0;
    336 	    goto have_c0min;
    337 	  }
    338       }
    339  have_c0min:
    340   if (c0max > c0min)
    341     for (c0 = c0max; c0 >= c0min; c0--)
    342       for (c1 = c1min; c1 <= c1max; c1++) {
    343 	histp = & histogram[c0][c1][c2min];
    344 	for (c2 = c2min; c2 <= c2max; c2++)
    345 	  if (*histp++ != 0) {
    346 	    boxp->c0max = c0max = c0;
    347 	    goto have_c0max;
    348 	  }
    349       }
    350  have_c0max:
    351   if (c1max > c1min)
    352     for (c1 = c1min; c1 <= c1max; c1++)
    353       for (c0 = c0min; c0 <= c0max; c0++) {
    354 	histp = & histogram[c0][c1][c2min];
    355 	for (c2 = c2min; c2 <= c2max; c2++)
    356 	  if (*histp++ != 0) {
    357 	    boxp->c1min = c1min = c1;
    358 	    goto have_c1min;
    359 	  }
    360       }
    361  have_c1min:
    362   if (c1max > c1min)
    363     for (c1 = c1max; c1 >= c1min; c1--)
    364       for (c0 = c0min; c0 <= c0max; c0++) {
    365 	histp = & histogram[c0][c1][c2min];
    366 	for (c2 = c2min; c2 <= c2max; c2++)
    367 	  if (*histp++ != 0) {
    368 	    boxp->c1max = c1max = c1;
    369 	    goto have_c1max;
    370 	  }
    371       }
    372  have_c1max:
    373   if (c2max > c2min)
    374     for (c2 = c2min; c2 <= c2max; c2++)
    375       for (c0 = c0min; c0 <= c0max; c0++) {
    376 	histp = & histogram[c0][c1min][c2];
    377 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
    378 	  if (*histp != 0) {
    379 	    boxp->c2min = c2min = c2;
    380 	    goto have_c2min;
    381 	  }
    382       }
    383  have_c2min:
    384   if (c2max > c2min)
    385     for (c2 = c2max; c2 >= c2min; c2--)
    386       for (c0 = c0min; c0 <= c0max; c0++) {
    387 	histp = & histogram[c0][c1min][c2];
    388 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
    389 	  if (*histp != 0) {
    390 	    boxp->c2max = c2max = c2;
    391 	    goto have_c2max;
    392 	  }
    393       }
    394  have_c2max:
    395 
    396   /* Update box volume.
    397    * We use 2-norm rather than real volume here; this biases the method
    398    * against making long narrow boxes, and it has the side benefit that
    399    * a box is splittable iff norm > 0.
    400    * Since the differences are expressed in histogram-cell units,
    401    * we have to shift back to JSAMPLE units to get consistent distances;
    402    * after which, we scale according to the selected distance scale factors.
    403    */
    404   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
    405   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
    406   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
    407   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
    408   
    409   /* Now scan remaining volume of box and compute population */
    410   ccount = 0;
    411   for (c0 = c0min; c0 <= c0max; c0++)
    412     for (c1 = c1min; c1 <= c1max; c1++) {
    413       histp = & histogram[c0][c1][c2min];
    414       for (c2 = c2min; c2 <= c2max; c2++, histp++)
    415 	if (*histp != 0) {
    416 	  ccount++;
    417 	}
    418     }
    419   boxp->colorcount = ccount;
    420 }
    421 
    422 
    423 LOCAL(int)
    424 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
    425 	    int desired_colors)
    426 /* Repeatedly select and split the largest box until we have enough boxes */
    427 {
    428   int n,lb;
    429   int c0,c1,c2,cmax;
    430   register boxptr b1,b2;
    431 
    432   while (numboxes < desired_colors) {
    433     /* Select box to split.
    434      * Current algorithm: by population for first half, then by volume.
    435      */
    436     if (numboxes*2 <= desired_colors) {
    437       b1 = find_biggest_color_pop(boxlist, numboxes);
    438     } else {
    439       b1 = find_biggest_volume(boxlist, numboxes);
    440     }
    441     if (b1 == NULL)		/* no splittable boxes left! */
    442       break;
    443     b2 = &boxlist[numboxes];	/* where new box will go */
    444     /* Copy the color bounds to the new box. */
    445     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
    446     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
    447     /* Choose which axis to split the box on.
    448      * Current algorithm: longest scaled axis.
    449      * See notes in update_box about scaling distances.
    450      */
    451     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
    452     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
    453     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
    454     /* We want to break any ties in favor of green, then red, blue last.
    455      * This code does the right thing for R,G,B or B,G,R color orders only.
    456      */
    457 #if RGB_RED == 0
    458     cmax = c1; n = 1;
    459     if (c0 > cmax) { cmax = c0; n = 0; }
    460     if (c2 > cmax) { n = 2; }
    461 #else
    462     cmax = c1; n = 1;
    463     if (c2 > cmax) { cmax = c2; n = 2; }
    464     if (c0 > cmax) { n = 0; }
    465 #endif
    466     /* Choose split point along selected axis, and update box bounds.
    467      * Current algorithm: split at halfway point.
    468      * (Since the box has been shrunk to minimum volume,
    469      * any split will produce two nonempty subboxes.)
    470      * Note that lb value is max for lower box, so must be < old max.
    471      */
    472     switch (n) {
    473     case 0:
    474       lb = (b1->c0max + b1->c0min) / 2;
    475       b1->c0max = lb;
    476       b2->c0min = lb+1;
    477       break;
    478     case 1:
    479       lb = (b1->c1max + b1->c1min) / 2;
    480       b1->c1max = lb;
    481       b2->c1min = lb+1;
    482       break;
    483     case 2:
    484       lb = (b1->c2max + b1->c2min) / 2;
    485       b1->c2max = lb;
    486       b2->c2min = lb+1;
    487       break;
    488     }
    489     /* Update stats for boxes */
    490     update_box(cinfo, b1);
    491     update_box(cinfo, b2);
    492     numboxes++;
    493   }
    494   return numboxes;
    495 }
    496 
    497 
    498 LOCAL(void)
    499 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
    500 /* Compute representative color for a box, put it in colormap[icolor] */
    501 {
    502   /* Current algorithm: mean weighted by pixels (not colors) */
    503   /* Note it is important to get the rounding correct! */
    504   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    505   hist3d histogram = cquantize->histogram;
    506   histptr histp;
    507   int c0,c1,c2;
    508   int c0min,c0max,c1min,c1max,c2min,c2max;
    509   long count;
    510   long total = 0;
    511   long c0total = 0;
    512   long c1total = 0;
    513   long c2total = 0;
    514   
    515   c0min = boxp->c0min;  c0max = boxp->c0max;
    516   c1min = boxp->c1min;  c1max = boxp->c1max;
    517   c2min = boxp->c2min;  c2max = boxp->c2max;
    518   
    519   for (c0 = c0min; c0 <= c0max; c0++)
    520     for (c1 = c1min; c1 <= c1max; c1++) {
    521       histp = & histogram[c0][c1][c2min];
    522       for (c2 = c2min; c2 <= c2max; c2++) {
    523 	if ((count = *histp++) != 0) {
    524 	  total += count;
    525 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
    526 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
    527 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
    528 	}
    529       }
    530     }
    531   
    532   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
    533   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
    534   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
    535 }
    536 
    537 
    538 LOCAL(void)
    539 select_colors (j_decompress_ptr cinfo, int desired_colors)
    540 /* Master routine for color selection */
    541 {
    542   boxptr boxlist;
    543   int numboxes;
    544   int i;
    545 
    546   /* Allocate workspace for box list */
    547   boxlist = (boxptr) (*cinfo->mem->alloc_small)
    548     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
    549   /* Initialize one box containing whole space */
    550   numboxes = 1;
    551   boxlist[0].c0min = 0;
    552   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
    553   boxlist[0].c1min = 0;
    554   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
    555   boxlist[0].c2min = 0;
    556   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
    557   /* Shrink it to actually-used volume and set its statistics */
    558   update_box(cinfo, & boxlist[0]);
    559   /* Perform median-cut to produce final box list */
    560   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
    561   /* Compute the representative color for each box, fill colormap */
    562   for (i = 0; i < numboxes; i++)
    563     compute_color(cinfo, & boxlist[i], i);
    564   cinfo->actual_number_of_colors = numboxes;
    565   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
    566 }
    567 
    568 
    569 /*
    570  * These routines are concerned with the time-critical task of mapping input
    571  * colors to the nearest color in the selected colormap.
    572  *
    573  * We re-use the histogram space as an "inverse color map", essentially a
    574  * cache for the results of nearest-color searches.  All colors within a
    575  * histogram cell will be mapped to the same colormap entry, namely the one
    576  * closest to the cell's center.  This may not be quite the closest entry to
    577  * the actual input color, but it's almost as good.  A zero in the cache
    578  * indicates we haven't found the nearest color for that cell yet; the array
    579  * is cleared to zeroes before starting the mapping pass.  When we find the
    580  * nearest color for a cell, its colormap index plus one is recorded in the
    581  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
    582  * when they need to use an unfilled entry in the cache.
    583  *
    584  * Our method of efficiently finding nearest colors is based on the "locally
    585  * sorted search" idea described by Heckbert and on the incremental distance
    586  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
    587  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
    588  * the distances from a given colormap entry to each cell of the histogram can
    589  * be computed quickly using an incremental method: the differences between
    590  * distances to adjacent cells themselves differ by a constant.  This allows a
    591  * fairly fast implementation of the "brute force" approach of computing the
    592  * distance from every colormap entry to every histogram cell.  Unfortunately,
    593  * it needs a work array to hold the best-distance-so-far for each histogram
    594  * cell (because the inner loop has to be over cells, not colormap entries).
    595  * The work array elements have to be INT32s, so the work array would need
    596  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
    597  *
    598  * To get around these problems, we apply Thomas' method to compute the
    599  * nearest colors for only the cells within a small subbox of the histogram.
    600  * The work array need be only as big as the subbox, so the memory usage
    601  * problem is solved.  Furthermore, we need not fill subboxes that are never
    602  * referenced in pass2; many images use only part of the color gamut, so a
    603  * fair amount of work is saved.  An additional advantage of this
    604  * approach is that we can apply Heckbert's locality criterion to quickly
    605  * eliminate colormap entries that are far away from the subbox; typically
    606  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
    607  * and we need not compute their distances to individual cells in the subbox.
    608  * The speed of this approach is heavily influenced by the subbox size: too
    609  * small means too much overhead, too big loses because Heckbert's criterion
    610  * can't eliminate as many colormap entries.  Empirically the best subbox
    611  * size seems to be about 1/512th of the histogram (1/8th in each direction).
    612  *
    613  * Thomas' article also describes a refined method which is asymptotically
    614  * faster than the brute-force method, but it is also far more complex and
    615  * cannot efficiently be applied to small subboxes.  It is therefore not
    616  * useful for programs intended to be portable to DOS machines.  On machines
    617  * with plenty of memory, filling the whole histogram in one shot with Thomas'
    618  * refined method might be faster than the present code --- but then again,
    619  * it might not be any faster, and it's certainly more complicated.
    620  */
    621 
    622 
    623 /* log2(histogram cells in update box) for each axis; this can be adjusted */
    624 #define BOX_C0_LOG  (HIST_C0_BITS-3)
    625 #define BOX_C1_LOG  (HIST_C1_BITS-3)
    626 #define BOX_C2_LOG  (HIST_C2_BITS-3)
    627 
    628 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
    629 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
    630 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
    631 
    632 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
    633 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
    634 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
    635 
    636 
    637 /*
    638  * The next three routines implement inverse colormap filling.  They could
    639  * all be folded into one big routine, but splitting them up this way saves
    640  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
    641  * and may allow some compilers to produce better code by registerizing more
    642  * inner-loop variables.
    643  */
    644 
    645 LOCAL(int)
    646 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
    647 		    JSAMPLE colorlist[])
    648 /* Locate the colormap entries close enough to an update box to be candidates
    649  * for the nearest entry to some cell(s) in the update box.  The update box
    650  * is specified by the center coordinates of its first cell.  The number of
    651  * candidate colormap entries is returned, and their colormap indexes are
    652  * placed in colorlist[].
    653  * This routine uses Heckbert's "locally sorted search" criterion to select
    654  * the colors that need further consideration.
    655  */
    656 {
    657   int numcolors = cinfo->actual_number_of_colors;
    658   int maxc0, maxc1, maxc2;
    659   int centerc0, centerc1, centerc2;
    660   int i, x, ncolors;
    661   INT32 minmaxdist, min_dist, max_dist, tdist;
    662   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
    663 
    664   /* Compute true coordinates of update box's upper corner and center.
    665    * Actually we compute the coordinates of the center of the upper-corner
    666    * histogram cell, which are the upper bounds of the volume we care about.
    667    * Note that since ">>" rounds down, the "center" values may be closer to
    668    * min than to max; hence comparisons to them must be "<=", not "<".
    669    */
    670   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
    671   centerc0 = (minc0 + maxc0) >> 1;
    672   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
    673   centerc1 = (minc1 + maxc1) >> 1;
    674   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
    675   centerc2 = (minc2 + maxc2) >> 1;
    676 
    677   /* For each color in colormap, find:
    678    *  1. its minimum squared-distance to any point in the update box
    679    *     (zero if color is within update box);
    680    *  2. its maximum squared-distance to any point in the update box.
    681    * Both of these can be found by considering only the corners of the box.
    682    * We save the minimum distance for each color in mindist[];
    683    * only the smallest maximum distance is of interest.
    684    */
    685   minmaxdist = 0x7FFFFFFFL;
    686 
    687   for (i = 0; i < numcolors; i++) {
    688     /* We compute the squared-c0-distance term, then add in the other two. */
    689     x = GETJSAMPLE(cinfo->colormap[0][i]);
    690     if (x < minc0) {
    691       tdist = (x - minc0) * C0_SCALE;
    692       min_dist = tdist*tdist;
    693       tdist = (x - maxc0) * C0_SCALE;
    694       max_dist = tdist*tdist;
    695     } else if (x > maxc0) {
    696       tdist = (x - maxc0) * C0_SCALE;
    697       min_dist = tdist*tdist;
    698       tdist = (x - minc0) * C0_SCALE;
    699       max_dist = tdist*tdist;
    700     } else {
    701       /* within cell range so no contribution to min_dist */
    702       min_dist = 0;
    703       if (x <= centerc0) {
    704 	tdist = (x - maxc0) * C0_SCALE;
    705 	max_dist = tdist*tdist;
    706       } else {
    707 	tdist = (x - minc0) * C0_SCALE;
    708 	max_dist = tdist*tdist;
    709       }
    710     }
    711 
    712     x = GETJSAMPLE(cinfo->colormap[1][i]);
    713     if (x < minc1) {
    714       tdist = (x - minc1) * C1_SCALE;
    715       min_dist += tdist*tdist;
    716       tdist = (x - maxc1) * C1_SCALE;
    717       max_dist += tdist*tdist;
    718     } else if (x > maxc1) {
    719       tdist = (x - maxc1) * C1_SCALE;
    720       min_dist += tdist*tdist;
    721       tdist = (x - minc1) * C1_SCALE;
    722       max_dist += tdist*tdist;
    723     } else {
    724       /* within cell range so no contribution to min_dist */
    725       if (x <= centerc1) {
    726 	tdist = (x - maxc1) * C1_SCALE;
    727 	max_dist += tdist*tdist;
    728       } else {
    729 	tdist = (x - minc1) * C1_SCALE;
    730 	max_dist += tdist*tdist;
    731       }
    732     }
    733 
    734     x = GETJSAMPLE(cinfo->colormap[2][i]);
    735     if (x < minc2) {
    736       tdist = (x - minc2) * C2_SCALE;
    737       min_dist += tdist*tdist;
    738       tdist = (x - maxc2) * C2_SCALE;
    739       max_dist += tdist*tdist;
    740     } else if (x > maxc2) {
    741       tdist = (x - maxc2) * C2_SCALE;
    742       min_dist += tdist*tdist;
    743       tdist = (x - minc2) * C2_SCALE;
    744       max_dist += tdist*tdist;
    745     } else {
    746       /* within cell range so no contribution to min_dist */
    747       if (x <= centerc2) {
    748 	tdist = (x - maxc2) * C2_SCALE;
    749 	max_dist += tdist*tdist;
    750       } else {
    751 	tdist = (x - minc2) * C2_SCALE;
    752 	max_dist += tdist*tdist;
    753       }
    754     }
    755 
    756     mindist[i] = min_dist;	/* save away the results */
    757     if (max_dist < minmaxdist)
    758       minmaxdist = max_dist;
    759   }
    760 
    761   /* Now we know that no cell in the update box is more than minmaxdist
    762    * away from some colormap entry.  Therefore, only colors that are
    763    * within minmaxdist of some part of the box need be considered.
    764    */
    765   ncolors = 0;
    766   for (i = 0; i < numcolors; i++) {
    767     if (mindist[i] <= minmaxdist)
    768       colorlist[ncolors++] = (JSAMPLE) i;
    769   }
    770   return ncolors;
    771 }
    772 
    773 
    774 LOCAL(void)
    775 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
    776 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
    777 /* Find the closest colormap entry for each cell in the update box,
    778  * given the list of candidate colors prepared by find_nearby_colors.
    779  * Return the indexes of the closest entries in the bestcolor[] array.
    780  * This routine uses Thomas' incremental distance calculation method to
    781  * find the distance from a colormap entry to successive cells in the box.
    782  */
    783 {
    784   int ic0, ic1, ic2;
    785   int i, icolor;
    786   register INT32 * bptr;	/* pointer into bestdist[] array */
    787   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
    788   INT32 dist0, dist1;		/* initial distance values */
    789   register INT32 dist2;		/* current distance in inner loop */
    790   INT32 xx0, xx1;		/* distance increments */
    791   register INT32 xx2;
    792   INT32 inc0, inc1, inc2;	/* initial values for increments */
    793   /* This array holds the distance to the nearest-so-far color for each cell */
    794   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
    795 
    796   /* Initialize best-distance for each cell of the update box */
    797   bptr = bestdist;
    798   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
    799     *bptr++ = 0x7FFFFFFFL;
    800   
    801   /* For each color selected by find_nearby_colors,
    802    * compute its distance to the center of each cell in the box.
    803    * If that's less than best-so-far, update best distance and color number.
    804    */
    805   
    806   /* Nominal steps between cell centers ("x" in Thomas article) */
    807 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
    808 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
    809 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
    810   
    811   for (i = 0; i < numcolors; i++) {
    812     icolor = GETJSAMPLE(colorlist[i]);
    813     /* Compute (square of) distance from minc0/c1/c2 to this color */
    814     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
    815     dist0 = inc0*inc0;
    816     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
    817     dist0 += inc1*inc1;
    818     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
    819     dist0 += inc2*inc2;
    820     /* Form the initial difference increments */
    821     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
    822     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
    823     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
    824     /* Now loop over all cells in box, updating distance per Thomas method */
    825     bptr = bestdist;
    826     cptr = bestcolor;
    827     xx0 = inc0;
    828     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
    829       dist1 = dist0;
    830       xx1 = inc1;
    831       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
    832 	dist2 = dist1;
    833 	xx2 = inc2;
    834 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
    835 	  if (dist2 < *bptr) {
    836 	    *bptr = dist2;
    837 	    *cptr = (JSAMPLE) icolor;
    838 	  }
    839 	  dist2 += xx2;
    840 	  xx2 += 2 * STEP_C2 * STEP_C2;
    841 	  bptr++;
    842 	  cptr++;
    843 	}
    844 	dist1 += xx1;
    845 	xx1 += 2 * STEP_C1 * STEP_C1;
    846       }
    847       dist0 += xx0;
    848       xx0 += 2 * STEP_C0 * STEP_C0;
    849     }
    850   }
    851 }
    852 
    853 
    854 LOCAL(void)
    855 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
    856 /* Fill the inverse-colormap entries in the update box that contains */
    857 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
    858 /* we can fill as many others as we wish.) */
    859 {
    860   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    861   hist3d histogram = cquantize->histogram;
    862   int minc0, minc1, minc2;	/* lower left corner of update box */
    863   int ic0, ic1, ic2;
    864   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
    865   register histptr cachep;	/* pointer into main cache array */
    866   /* This array lists the candidate colormap indexes. */
    867   JSAMPLE colorlist[MAXNUMCOLORS];
    868   int numcolors;		/* number of candidate colors */
    869   /* This array holds the actually closest colormap index for each cell. */
    870   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
    871 
    872   /* Convert cell coordinates to update box ID */
    873   c0 >>= BOX_C0_LOG;
    874   c1 >>= BOX_C1_LOG;
    875   c2 >>= BOX_C2_LOG;
    876 
    877   /* Compute true coordinates of update box's origin corner.
    878    * Actually we compute the coordinates of the center of the corner
    879    * histogram cell, which are the lower bounds of the volume we care about.
    880    */
    881   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
    882   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
    883   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
    884   
    885   /* Determine which colormap entries are close enough to be candidates
    886    * for the nearest entry to some cell in the update box.
    887    */
    888   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
    889 
    890   /* Determine the actually nearest colors. */
    891   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
    892 		   bestcolor);
    893 
    894   /* Save the best color numbers (plus 1) in the main cache array */
    895   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
    896   c1 <<= BOX_C1_LOG;
    897   c2 <<= BOX_C2_LOG;
    898   cptr = bestcolor;
    899   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
    900     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
    901       cachep = & histogram[c0+ic0][c1+ic1][c2];
    902       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
    903 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
    904       }
    905     }
    906   }
    907 }
    908 
    909 
    910 /*
    911  * Map some rows of pixels to the output colormapped representation.
    912  */
    913 
    914 METHODDEF(void)
    915 pass2_no_dither (j_decompress_ptr cinfo,
    916 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
    917 /* This version performs no dithering */
    918 {
    919   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    920   hist3d histogram = cquantize->histogram;
    921   register JSAMPROW inptr, outptr;
    922   register histptr cachep;
    923   register int c0, c1, c2;
    924   int row;
    925   JDIMENSION col;
    926   JDIMENSION width = cinfo->output_width;
    927 
    928   for (row = 0; row < num_rows; row++) {
    929     inptr = input_buf[row];
    930     outptr = output_buf[row];
    931     for (col = width; col > 0; col--) {
    932       /* get pixel value and index into the cache */
    933       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
    934       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
    935       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
    936       cachep = & histogram[c0][c1][c2];
    937       /* If we have not seen this color before, find nearest colormap entry */
    938       /* and update the cache */
    939       if (*cachep == 0)
    940 	fill_inverse_cmap(cinfo, c0,c1,c2);
    941       /* Now emit the colormap index for this cell */
    942       *outptr++ = (JSAMPLE) (*cachep - 1);
    943     }
    944   }
    945 }
    946 
    947 
    948 METHODDEF(void)
    949 pass2_fs_dither (j_decompress_ptr cinfo,
    950 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
    951 /* This version performs Floyd-Steinberg dithering */
    952 {
    953   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    954   hist3d histogram = cquantize->histogram;
    955   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
    956   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
    957   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
    958   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
    959   JSAMPROW inptr;		/* => current input pixel */
    960   JSAMPROW outptr;		/* => current output pixel */
    961   histptr cachep;
    962   int dir;			/* +1 or -1 depending on direction */
    963   int dir3;			/* 3*dir, for advancing inptr & errorptr */
    964   int row;
    965   JDIMENSION col;
    966   JDIMENSION width = cinfo->output_width;
    967   JSAMPLE *range_limit = cinfo->sample_range_limit;
    968   int *error_limit = cquantize->error_limiter;
    969   JSAMPROW colormap0 = cinfo->colormap[0];
    970   JSAMPROW colormap1 = cinfo->colormap[1];
    971   JSAMPROW colormap2 = cinfo->colormap[2];
    972   SHIFT_TEMPS
    973 
    974   for (row = 0; row < num_rows; row++) {
    975     inptr = input_buf[row];
    976     outptr = output_buf[row];
    977     if (cquantize->on_odd_row) {
    978       /* work right to left in this row */
    979       inptr += (width-1) * 3;	/* so point to rightmost pixel */
    980       outptr += width-1;
    981       dir = -1;
    982       dir3 = -3;
    983       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
    984       cquantize->on_odd_row = FALSE; /* flip for next time */
    985     } else {
    986       /* work left to right in this row */
    987       dir = 1;
    988       dir3 = 3;
    989       errorptr = cquantize->fserrors; /* => entry before first real column */
    990       cquantize->on_odd_row = TRUE; /* flip for next time */
    991     }
    992     /* Preset error values: no error propagated to first pixel from left */
    993     cur0 = cur1 = cur2 = 0;
    994     /* and no error propagated to row below yet */
    995     belowerr0 = belowerr1 = belowerr2 = 0;
    996     bpreverr0 = bpreverr1 = bpreverr2 = 0;
    997 
    998     for (col = width; col > 0; col--) {
    999       /* curN holds the error propagated from the previous pixel on the
   1000        * current line.  Add the error propagated from the previous line
   1001        * to form the complete error correction term for this pixel, and
   1002        * round the error term (which is expressed * 16) to an integer.
   1003        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
   1004        * for either sign of the error value.
   1005        * Note: errorptr points to *previous* column's array entry.
   1006        */
   1007       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
   1008       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
   1009       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
   1010       /* Limit the error using transfer function set by init_error_limit.
   1011        * See comments with init_error_limit for rationale.
   1012        */
   1013       cur0 = error_limit[cur0];
   1014       cur1 = error_limit[cur1];
   1015       cur2 = error_limit[cur2];
   1016       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
   1017        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
   1018        * this sets the required size of the range_limit array.
   1019        */
   1020       cur0 += GETJSAMPLE(inptr[0]);
   1021       cur1 += GETJSAMPLE(inptr[1]);
   1022       cur2 += GETJSAMPLE(inptr[2]);
   1023       cur0 = GETJSAMPLE(range_limit[cur0]);
   1024       cur1 = GETJSAMPLE(range_limit[cur1]);
   1025       cur2 = GETJSAMPLE(range_limit[cur2]);
   1026       /* Index into the cache with adjusted pixel value */
   1027       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
   1028       /* If we have not seen this color before, find nearest colormap */
   1029       /* entry and update the cache */
   1030       if (*cachep == 0)
   1031 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
   1032       /* Now emit the colormap index for this cell */
   1033       { register int pixcode = *cachep - 1;
   1034 	*outptr = (JSAMPLE) pixcode;
   1035 	/* Compute representation error for this pixel */
   1036 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
   1037 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
   1038 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
   1039       }
   1040       /* Compute error fractions to be propagated to adjacent pixels.
   1041        * Add these into the running sums, and simultaneously shift the
   1042        * next-line error sums left by 1 column.
   1043        */
   1044       { register LOCFSERROR bnexterr, delta;
   1045 
   1046 	bnexterr = cur0;	/* Process component 0 */
   1047 	delta = cur0 * 2;
   1048 	cur0 += delta;		/* form error * 3 */
   1049 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
   1050 	cur0 += delta;		/* form error * 5 */
   1051 	bpreverr0 = belowerr0 + cur0;
   1052 	belowerr0 = bnexterr;
   1053 	cur0 += delta;		/* form error * 7 */
   1054 	bnexterr = cur1;	/* Process component 1 */
   1055 	delta = cur1 * 2;
   1056 	cur1 += delta;		/* form error * 3 */
   1057 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
   1058 	cur1 += delta;		/* form error * 5 */
   1059 	bpreverr1 = belowerr1 + cur1;
   1060 	belowerr1 = bnexterr;
   1061 	cur1 += delta;		/* form error * 7 */
   1062 	bnexterr = cur2;	/* Process component 2 */
   1063 	delta = cur2 * 2;
   1064 	cur2 += delta;		/* form error * 3 */
   1065 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
   1066 	cur2 += delta;		/* form error * 5 */
   1067 	bpreverr2 = belowerr2 + cur2;
   1068 	belowerr2 = bnexterr;
   1069 	cur2 += delta;		/* form error * 7 */
   1070       }
   1071       /* At this point curN contains the 7/16 error value to be propagated
   1072        * to the next pixel on the current line, and all the errors for the
   1073        * next line have been shifted over.  We are therefore ready to move on.
   1074        */
   1075       inptr += dir3;		/* Advance pixel pointers to next column */
   1076       outptr += dir;
   1077       errorptr += dir3;		/* advance errorptr to current column */
   1078     }
   1079     /* Post-loop cleanup: we must unload the final error values into the
   1080      * final fserrors[] entry.  Note we need not unload belowerrN because
   1081      * it is for the dummy column before or after the actual array.
   1082      */
   1083     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
   1084     errorptr[1] = (FSERROR) bpreverr1;
   1085     errorptr[2] = (FSERROR) bpreverr2;
   1086   }
   1087 }
   1088 
   1089 
   1090 /*
   1091  * Initialize the error-limiting transfer function (lookup table).
   1092  * The raw F-S error computation can potentially compute error values of up to
   1093  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
   1094  * much less, otherwise obviously wrong pixels will be created.  (Typical
   1095  * effects include weird fringes at color-area boundaries, isolated bright
   1096  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
   1097  * is to ensure that the "corners" of the color cube are allocated as output
   1098  * colors; then repeated errors in the same direction cannot cause cascading
   1099  * error buildup.  However, that only prevents the error from getting
   1100  * completely out of hand; Aaron Giles reports that error limiting improves
   1101  * the results even with corner colors allocated.
   1102  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
   1103  * well, but the smoother transfer function used below is even better.  Thanks
   1104  * to Aaron Giles for this idea.
   1105  */
   1106 
   1107 LOCAL(void)
   1108 init_error_limit (j_decompress_ptr cinfo)
   1109 /* Allocate and fill in the error_limiter table */
   1110 {
   1111   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1112   int * table;
   1113   int in, out;
   1114 
   1115   table = (int *) (*cinfo->mem->alloc_small)
   1116     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
   1117   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
   1118   cquantize->error_limiter = table;
   1119 
   1120 #define STEPSIZE ((MAXJSAMPLE+1)/16)
   1121   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
   1122   out = 0;
   1123   for (in = 0; in < STEPSIZE; in++, out++) {
   1124     table[in] = out; table[-in] = -out;
   1125   }
   1126   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
   1127   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
   1128     table[in] = out; table[-in] = -out;
   1129   }
   1130   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
   1131   for (; in <= MAXJSAMPLE; in++) {
   1132     table[in] = out; table[-in] = -out;
   1133   }
   1134 #undef STEPSIZE
   1135 }
   1136 
   1137 
   1138 /*
   1139  * Finish up at the end of each pass.
   1140  */
   1141 
   1142 METHODDEF(void)
   1143 finish_pass1 (j_decompress_ptr cinfo)
   1144 {
   1145   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1146 
   1147   /* Select the representative colors and fill in cinfo->colormap */
   1148   cinfo->colormap = cquantize->sv_colormap;
   1149   select_colors(cinfo, cquantize->desired);
   1150   /* Force next pass to zero the color index table */
   1151   cquantize->needs_zeroed = TRUE;
   1152 }
   1153 
   1154 
   1155 METHODDEF(void)
   1156 finish_pass2 (j_decompress_ptr cinfo)
   1157 {
   1158   /* no work */
   1159 }
   1160 
   1161 
   1162 /*
   1163  * Initialize for each processing pass.
   1164  */
   1165 
   1166 METHODDEF(void)
   1167 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
   1168 {
   1169   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1170   hist3d histogram = cquantize->histogram;
   1171   int i;
   1172 
   1173   /* Only F-S dithering or no dithering is supported. */
   1174   /* If user asks for ordered dither, give him F-S. */
   1175   if (cinfo->dither_mode != JDITHER_NONE)
   1176     cinfo->dither_mode = JDITHER_FS;
   1177 
   1178   if (is_pre_scan) {
   1179     /* Set up method pointers */
   1180     cquantize->pub.color_quantize = prescan_quantize;
   1181     cquantize->pub.finish_pass = finish_pass1;
   1182     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
   1183   } else {
   1184     /* Set up method pointers */
   1185     if (cinfo->dither_mode == JDITHER_FS)
   1186       cquantize->pub.color_quantize = pass2_fs_dither;
   1187     else
   1188       cquantize->pub.color_quantize = pass2_no_dither;
   1189     cquantize->pub.finish_pass = finish_pass2;
   1190 
   1191     /* Make sure color count is acceptable */
   1192     i = cinfo->actual_number_of_colors;
   1193     if (i < 1)
   1194       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
   1195     if (i > MAXNUMCOLORS)
   1196       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
   1197 
   1198     if (cinfo->dither_mode == JDITHER_FS) {
   1199       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
   1200 				   (3 * SIZEOF(FSERROR)));
   1201       /* Allocate Floyd-Steinberg workspace if we didn't already. */
   1202       if (cquantize->fserrors == NULL)
   1203 	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
   1204 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
   1205       /* Initialize the propagated errors to zero. */
   1206       jzero_far((void FAR *) cquantize->fserrors, arraysize);
   1207       /* Make the error-limit table if we didn't already. */
   1208       if (cquantize->error_limiter == NULL)
   1209 	init_error_limit(cinfo);
   1210       cquantize->on_odd_row = FALSE;
   1211     }
   1212 
   1213   }
   1214   /* Zero the histogram or inverse color map, if necessary */
   1215   if (cquantize->needs_zeroed) {
   1216     for (i = 0; i < HIST_C0_ELEMS; i++) {
   1217       jzero_far((void FAR *) histogram[i],
   1218 		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
   1219     }
   1220     cquantize->needs_zeroed = FALSE;
   1221   }
   1222 }
   1223 
   1224 
   1225 /*
   1226  * Switch to a new external colormap between output passes.
   1227  */
   1228 
   1229 METHODDEF(void)
   1230 new_color_map_2_quant (j_decompress_ptr cinfo)
   1231 {
   1232   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   1233 
   1234   /* Reset the inverse color map */
   1235   cquantize->needs_zeroed = TRUE;
   1236 }
   1237 
   1238 
   1239 /*
   1240  * Module initialization routine for 2-pass color quantization.
   1241  */
   1242 
   1243 GLOBAL(void)
   1244 jinit_2pass_quantizer (j_decompress_ptr cinfo)
   1245 {
   1246   my_cquantize_ptr cquantize;
   1247   int i;
   1248 
   1249   cquantize = (my_cquantize_ptr)
   1250     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1251 				SIZEOF(my_cquantizer));
   1252   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
   1253   cquantize->pub.start_pass = start_pass_2_quant;
   1254   cquantize->pub.new_color_map = new_color_map_2_quant;
   1255   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
   1256   cquantize->error_limiter = NULL;
   1257 
   1258   /* Make sure jdmaster didn't give me a case I can't handle */
   1259   if (cinfo->out_color_components != 3)
   1260     ERREXIT(cinfo, JERR_NOTIMPL);
   1261 
   1262   /* Allocate the histogram/inverse colormap storage */
   1263   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
   1264     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
   1265   for (i = 0; i < HIST_C0_ELEMS; i++) {
   1266     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
   1267       ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1268        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
   1269   }
   1270   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
   1271 
   1272   /* Allocate storage for the completed colormap, if required.
   1273    * We do this now since it is FAR storage and may affect
   1274    * the memory manager's space calculations.
   1275    */
   1276   if (cinfo->enable_2pass_quant) {
   1277     /* Make sure color count is acceptable */
   1278     int desired = cinfo->desired_number_of_colors;
   1279     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
   1280     if (desired < 8)
   1281       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
   1282     /* Make sure colormap indexes can be represented by JSAMPLEs */
   1283     if (desired > MAXNUMCOLORS)
   1284       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
   1285     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
   1286       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
   1287     cquantize->desired = desired;
   1288   } else
   1289     cquantize->sv_colormap = NULL;
   1290 
   1291   /* Only F-S dithering or no dithering is supported. */
   1292   /* If user asks for ordered dither, give him F-S. */
   1293   if (cinfo->dither_mode != JDITHER_NONE)
   1294     cinfo->dither_mode = JDITHER_FS;
   1295 
   1296   /* Allocate Floyd-Steinberg workspace if necessary.
   1297    * This isn't really needed until pass 2, but again it is FAR storage.
   1298    * Although we will cope with a later change in dither_mode,
   1299    * we do not promise to honor max_memory_to_use if dither_mode changes.
   1300    */
   1301   if (cinfo->dither_mode == JDITHER_FS) {
   1302     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
   1303       ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1304        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
   1305     /* Might as well create the error-limiting table too. */
   1306     init_error_limit(cinfo);
   1307   }
   1308 }
   1309 
   1310 #endif /* QUANT_2PASS_SUPPORTED */